zoukankan      html  css  js  c++  java
  • [LintCode] Course Schedule II

    There are a total of n courses you have to take, labeled from 0 to n - 1.
    Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

    There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

    Example

    Given n = 2, prerequisites = [[1,0]]
    Return [0,1]

    Given n = 4, prerequisites = [1,0],[2,0],[3,1],[3,2]]
    Return [0,1,2,3] or [0,2,1,3]

     
    This problem is essentially the same with Course Schedule. The only difference is that this problem asks for a concrete topological ordering.
    We can leverage the solutions from Topological Sorting and solve this problem using both BFS and DFS. The difference here would be cycle detection logic since it is not guranteed that we can find a topological ordering.
     
    Solution 1. BFS 
     1 public class Solution {
     2     /**
     3      * @param numCourses a total of n courses
     4      * @param prerequisites a list of prerequisite pairs
     5      * @return the course order
     6      */
     7     public int[] findOrder(int numCourses, int[][] prerequisites) {
     8         ArrayList<ArrayList<Integer>> edges = new ArrayList<ArrayList<Integer>>();
     9         int[] incomingEdgeNum = new int[numCourses];
    10         int[] result = new int[numCourses];
    11         
    12         for(int i = 0; i < numCourses; i++)
    13         {
    14             edges.add(new ArrayList<Integer>());
    15         }
    16         int courseNum;
    17         for(int i = 0; i < prerequisites.length; i++)
    18         {
    19             courseNum = prerequisites[i][0];
    20             incomingEdgeNum[courseNum]++;
    21             edges.get(prerequisites[i][1]).add(courseNum);
    22         }
    23         
    24         Queue<Integer> queue = new LinkedList<Integer>();
    25         int currIdx = 0;
    26         for(int i = 0; i < incomingEdgeNum.length; i++)
    27         {
    28             if(incomingEdgeNum[i] == 0)
    29             {
    30                 queue.add(i);
    31                 result[currIdx] = i;
    32                 currIdx++;
    33             }
    34         }
    35         
    36         int count = 0;
    37         while(!queue.isEmpty())
    38         {
    39             int course = queue.poll();
    40             count++;
    41             int n = edges.get(course).size();
    42             for(int i = 0; i < n; i++)
    43             {
    44                 int neighbor = edges.get(course).get(i);
    45                 incomingEdgeNum[neighbor]--;
    46                 if(incomingEdgeNum[neighbor] == 0)
    47                 {
    48                     queue.add(neighbor);
    49                     result[currIdx] = neighbor;
    50                     currIdx++;
    51                 }
    52             }
    53         }
    54         if(count < numCourses)
    55         {
    56             return new int[0];
    57         }
    58         return result;
    59     }
    60 }
    Solution 2.DFS 
    The depth of the recursive calls can get big if the input size gets big.
     
     1 public class Solution {
     2     public int[] findOrder(int numCourses, int[][] prerequisites) {
     3         if(numCourses <= 0) {
     4             return new int[0];
     5         }
     6         if(prerequisites == null) {
     7             int[] result = new int[numCourses];
     8             for(int i = 0; i < numCourses; i++) {
     9                 result[i] = i;
    10             }
    11             return result;
    12         }
    13         ArrayList<ArrayList<Integer>> graph = new ArrayList<ArrayList<Integer>>();
    14         for(int i = 0; i < numCourses; i++) {
    15             graph.add(new ArrayList<Integer>());
    16         }
    17         for(int j = 0; j < prerequisites.length; j++) {
    18             graph.get(prerequisites[j][1]).add(prerequisites[j][0]);
    19         }
    20         boolean hasCycle = false;
    21         Set<Integer> exploring = new HashSet<Integer>();
    22         Set<Integer> explored = new HashSet<Integer>();
    23         Stack<Integer> stack = new Stack<Integer>();
    24         int[] result = new int[numCourses];
    25         for(int i = 0; i < numCourses; i++) {
    26             if(!explored.contains(i) && dfs(i, exploring, explored, graph, stack)) {
    27                 hasCycle = true;
    28                 break;
    29             }
    30         }
    31         if(hasCycle) {
    32             return new int[0];
    33         }
    34         int idx = 0;
    35         while(!stack.empty()) {
    36             result[idx] = stack.pop();
    37             idx++;
    38         }
    39         return result;
    40     }
    41     private boolean dfs(int current, Set<Integer> exploring, Set<Integer> explored,
    42                         ArrayList<ArrayList<Integer>> graph, Stack<Integer> stack) {
    43         exploring.add(current);
    44         for(Integer neighbor : graph.get(current)) {
    45             if(explored.contains(neighbor)) {
    46                 continue;
    47             }
    48             if(exploring.contains(neighbor)) {
    49                 return true;
    50             }
    51             if(dfs(neighbor, exploring, explored, graph, stack)) {
    52                 return true;
    53             }
    54         }
    55         exploring.remove(current);
    56         explored.add(current);
    57         stack.push(current);
    58         return false;
    59     } 
    60 }
     
    Related Problems
    Course Schedule
    Sequence Reconstruction
    Topological Sorting
     
  • 相关阅读:
    剑指Offer——对成的二叉树
    剑指Offer——二叉树的下一个节点
    路径总和I、II、III
    性能调优工具
    关于在程序中内存检测的一些知识
    ptmalloc、tcmalloc及 jemalloc总结
    [LeetCode] 43. 字符串相乘
    [LeetCode] 155. Min Stack
    [LeetCode] 380. Insert Delete GetRandom O(1)
    linux内存过高排查
  • 原文地址:https://www.cnblogs.com/lz87/p/7493993.html
Copyright © 2011-2022 走看看