zoukankan      html  css  js  c++  java
  • [LintCode] Six Degrees

     Six degrees of separation is the theory that everyone and everything is six or fewer steps away, by way of introduction, from any other person in the world, so that a chain of "a friend of a friend" statements can be made to connect any two people in a maximum of six steps.

    Given a friendship relations, find the degrees of two people, return -1 if they can not been connected by friends of friends.

    Example

    Gien a graph:

    1------2-----4
               /
              /
       --3--/
    

    {1,2,3#2,1,4#3,1,4#4,2,3} and s = 1, t = 4 return 2

    Gien a graph:

    1      2-----4
                 /
               /
              3
    

    {1#2,4#3,4#4,2,3} and s = 1, t = 4 return -1

     1 /**
     2  * Definition for Undirected graph.
     3  * class UndirectedGraphNode {
     4  *     int label;
     5  *     List<UndirectedGraphNode> neighbors;
     6  *     UndirectedGraphNode(int x) { 
     7  *         label = x;
     8  *         neighbors = new ArrayList<UndirectedGraphNode>(); 
     9  *     }
    10  * };
    11  */
    12 
    13 
    14 public class Solution {
    15     public int sixDegrees(List<UndirectedGraphNode> graph, UndirectedGraphNode s, UndirectedGraphNode t) {
    16         if(graph == null || !graph.contains(s) || !graph.contains(t)) {
    17             return -1;
    18         }
    19         if(s == t) {
    20             return 0;
    21         }
    22         Queue<UndirectedGraphNode> q = new LinkedList<UndirectedGraphNode>();
    23         Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
    24         int layer = 1;
    25         q.add(s);
    26         visited.add(s);
    27         while(!q.isEmpty()) {
    28             int size = q.size();
    29             for(int i = 0; i < size; i++) {
    30                  UndirectedGraphNode curr = q.poll();
    31                  for(UndirectedGraphNode neighbor : curr.neighbors) {
    32                      if(visited.contains(neighbor)) {
    33                          continue;
    34                      }
    35                      if(neighbor == t) {
    36                         return layer; 
    37                      }
    38                      else {
    39                          q.add(neighbor);
    40                          visited.add(neighbor);
    41                      }
    42                  }
    43             }
    44             layer++;
    45         }
    46         return -1;
    47     }
    48 }

    Related Problems

    Clone Graph

  • 相关阅读:
    C#带日期型默认值参数的函数
    mvc调用webapi上传图片或文件
    mysql增删改查存储过程
    sql 分页存储过程
    sql 出库存储过程
    Ternura
    留言板
    友链
    .net 死锁
    C#微信小程序搜索框
  • 原文地址:https://www.cnblogs.com/lz87/p/7496936.html
Copyright © 2011-2022 走看看