zoukankan      html  css  js  c++  java
  • [LintCode] Six Degrees

     Six degrees of separation is the theory that everyone and everything is six or fewer steps away, by way of introduction, from any other person in the world, so that a chain of "a friend of a friend" statements can be made to connect any two people in a maximum of six steps.

    Given a friendship relations, find the degrees of two people, return -1 if they can not been connected by friends of friends.

    Example

    Gien a graph:

    1------2-----4
               /
              /
       --3--/
    

    {1,2,3#2,1,4#3,1,4#4,2,3} and s = 1, t = 4 return 2

    Gien a graph:

    1      2-----4
                 /
               /
              3
    

    {1#2,4#3,4#4,2,3} and s = 1, t = 4 return -1

     1 /**
     2  * Definition for Undirected graph.
     3  * class UndirectedGraphNode {
     4  *     int label;
     5  *     List<UndirectedGraphNode> neighbors;
     6  *     UndirectedGraphNode(int x) { 
     7  *         label = x;
     8  *         neighbors = new ArrayList<UndirectedGraphNode>(); 
     9  *     }
    10  * };
    11  */
    12 
    13 
    14 public class Solution {
    15     public int sixDegrees(List<UndirectedGraphNode> graph, UndirectedGraphNode s, UndirectedGraphNode t) {
    16         if(graph == null || !graph.contains(s) || !graph.contains(t)) {
    17             return -1;
    18         }
    19         if(s == t) {
    20             return 0;
    21         }
    22         Queue<UndirectedGraphNode> q = new LinkedList<UndirectedGraphNode>();
    23         Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
    24         int layer = 1;
    25         q.add(s);
    26         visited.add(s);
    27         while(!q.isEmpty()) {
    28             int size = q.size();
    29             for(int i = 0; i < size; i++) {
    30                  UndirectedGraphNode curr = q.poll();
    31                  for(UndirectedGraphNode neighbor : curr.neighbors) {
    32                      if(visited.contains(neighbor)) {
    33                          continue;
    34                      }
    35                      if(neighbor == t) {
    36                         return layer; 
    37                      }
    38                      else {
    39                          q.add(neighbor);
    40                          visited.add(neighbor);
    41                      }
    42                  }
    43             }
    44             layer++;
    45         }
    46         return -1;
    47     }
    48 }

    Related Problems

    Clone Graph

  • 相关阅读:
    还是模块
    模块
    Django之中间件和Auth模块
    Django之form表单组件、cookie与session
    ORM表查询之F查询和Q查询以及事务
    django之单表和多表查询
    django之模板层
    Django之路由
    Django之前戏
    前端之Bootstrap框架
  • 原文地址:https://www.cnblogs.com/lz87/p/7496936.html
Copyright © 2011-2022 走看看