zoukankan      html  css  js  c++  java
  • [LintCode] Connected Component in Undirected Graph

    Find the number connected component in the undirected graph. Each node in the graph contains a label and a list of its neighbors. (a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.)

    Each connected component should sort by label.

     
    Example

    Given graph:

    A------B  C
          |  | 
          |  |
          |  |
          |  |
          D   E
    

    Return {A,B,D}, {C,E}. Since there are two connected component which is {A,B,D}, {C,E}

    Solution 1. BFS

    Algorithm.

    Iterate all nodes in the input graph and do the following.

    1. For each unvisited graph node s, do a bfs starting from it and add all nodes that can be reached from s to a list as one connected component. Add each visited nodes to a global set that tracks which nodes have been visited.

    2. Sort each connected component.

     1 /**
     2  * Definition for Undirected graph.
     3  * class UndirectedGraphNode {
     4  *     int label;
     5  *     ArrayList<UndirectedGraphNode> neighbors;
     6  *     UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
     7  * };
     8  */
     9 
    10 //Algorithm 1. bfs 
    11 public class Solution {
    12     public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
    13         List<List<Integer>> results = new ArrayList<List<Integer>>();
    14         if(nodes == null || nodes.size() == 0)
    15         {
    16             return results;
    17         }
    18         Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
    19         //bfs on each node to get all the connected components
    20         for(UndirectedGraphNode node : nodes)   
    21         {
    22             if(!visited.contains(node))
    23             {
    24                 bfs(node, visited, results);
    25             }
    26         }
    27         return results;
    28     }
    29     private void bfs(UndirectedGraphNode node, 
    30                     Set<UndirectedGraphNode> visited,
    31                     List<List<Integer>> results)
    32     {
    33         ArrayList<Integer> comp = new ArrayList<Integer>();
    34         Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>();
    35         queue.offer(node);
    36         visited.add(node);
    37         comp.add(node.label);
    38         
    39         while(!queue.isEmpty())
    40         {
    41             UndirectedGraphNode curr = queue.poll();
    42             for(UndirectedGraphNode neighbor : curr.neighbors)
    43             {
    44                 if(!visited.contains(neighbor))
    45                 {
    46                     queue.offer(neighbor);
    47                     visited.add(neighbor);
    48                     comp.add(neighbor.label);
    49                 }
    50             }
    51         }
    52         Collections.sort(comp);
    53         results.add(comp);
    54     }
    55 }

    Solution 2. Union Find

    Algorithm.

    1. Add each node to a union find data structure and connect these nodes based on the graph edges. A hash map is better suited for the union find since the input graph nodes' labels do not necessarily starts from 0 and are not guranteed to be consecutive. 

    2. Iterate through the uf and create a mapping bewteen a root label and its represented node labels. Sort each map value and add it to the final result.

     1 //Algorithm 2. Union Find
     2 public class Solution {
     3     class UnionFind {
     4         private HashMap<Integer, Integer> father = null;
     5         public UnionFind(HashSet<Integer> labels){
     6             father = new HashMap<Integer, Integer>();
     7             for(Integer i : labels){
     8                 father.put(i, i);
     9             }
    10         }
    11         public int find(int x){
    12             int parent = father.get(x);
    13             while(parent != father.get(parent)){
    14                 parent = father.get(parent);
    15             }
    16             
    17             //compress path
    18             int next;
    19             while(x != father.get(x)){
    20                 next = father.get(x);
    21                 father.put(x, parent);
    22                 x = next;
    23             }
    24             return parent;
    25         }
    26         public void connect(int x, int y){
    27             int root_x = find(x);
    28             int root_y = find(y);
    29             if(root_x != root_y){
    30                 father.put(root_x, root_y);
    31             }
    32         }
    33         
    34     }
    35     public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
    36         List<List<Integer>> results = new ArrayList<List<Integer>>();
    37         if(nodes == null || nodes.size() == 0){
    38             return results;
    39         }
    40         //store all nodes' labels in a hash set
    41         HashSet<Integer> nodeLabels = new HashSet<Integer>();
    42         for(UndirectedGraphNode node : nodes){
    43             nodeLabels.add(node.label);
    44             for(UndirectedGraphNode neighbor : node.neighbors){
    45                 nodeLabels.add(neighbor.label);
    46             }
    47         }
    48         //connect all nodes based on the edges
    49         UnionFind uf = new UnionFind(nodeLabels);
    50         for(UndirectedGraphNode node : nodes){
    51             for(UndirectedGraphNode neighbor : node.neighbors){
    52                 uf.connect(node.label, neighbor.label);
    53             }
    54         }
    55         getAllCC(nodeLabels, uf, results);
    56         return results;
    57     }
    58     private void getAllCC(HashSet<Integer> nodeLabels, UnionFind uf, List<List<Integer>> results){
    59         //key: root representative of each connected component
    60         //value: connected component
    61         HashMap<Integer, List<Integer>> cc = new HashMap<Integer, List<Integer>>();
    62         for(int i : nodeLabels){
    63             int root = uf.find(i);
    64             if(!cc.containsKey(root)){
    65                 cc.put(root, new ArrayList<Integer>());
    66             }
    67             cc.get(root).add(i);
    68         }
    69         //sort answers
    70         for(List<Integer> comp : cc.values()){
    71             Collections.sort(comp);
    72             results.add(comp);
    73         }
    74     }
    75 }

    Related Problems

    Graph Valid Tree

    Find the Weak Connected Component in the Directed Graph

  • 相关阅读:
    设计模式学习每日一记(16.模板方法模式)
    lrzsz工具移植交叉编译
    设计模式学习每日一记(17.解释器模式)
    鼠标键盘共享之Synergy工具
    wpf中textblock竖立显示文本
    c#中常会涉及到一些类,List的深度拷贝。
    SQL 2005 多表分页存储过程
    C#中的委托和事件(续)[转]
    制作sitemap与在线生成网站地图并提交
    操作EXcel
  • 原文地址:https://www.cnblogs.com/lz87/p/7496951.html
Copyright © 2011-2022 走看看