zoukankan      html  css  js  c++  java
  • [LintCode] Unique Paths

    A robot is located at the top-left corner of a m x n grid.

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.

    How many possible unique paths are there?

    m and n will be at most 100.

    Example

    Given m = 3 and n = 3, return 6.
    Given m = 4 and n = 5, return 35.

    Solution 1. Recursion

    at any given point (x, y), f(x, y) = f(x + 1, y) + f(x, y + 1), we can form a dfs recursive solution using this formula. 

    This recursive solution has overlapping problems. 

    pathsTo(m, n) = pathsTo(m - 1, n) + pathsTo(m, n - 1);

    pathsTo(m - 1, n) = pathsTo(m - 2, n) + pathsTo(m - 1, n - 1);

    pathsTo(m, n - 1) = pathsTo(m, n - 2) +  pathsTo(m - 1, n - 1);

     1 public class Solution {
     2     private int paths = 0;
     3     public int uniquePaths(int m, int n) {
     4         dfs(m - 1, n - 1, 0, 0);
     5         return paths;
     6     }
     7     private void dfs(int dstX, int dstY, int currX, int currY){
     8         if(currX == dstX && currY == dstY){
     9             paths++;
    10             return;
    11         }
    12         if(currX > dstX || currY > dstY){
    13             return;
    14         }
    15         dfs(dstX, dstY, currX + 1, currY);
    16         dfs(dstX, dstY, currX, currY + 1);
    17     }
    18 }

    Solution 2. Dynamic Programming, O(m * n) runtime, O(m * n) space

    State: f[i][j] : the number of different paths from (0, 0) to (i, j)

    Function: f[i][j] = f[i][j - 1] + f[i - 1][j]; 

    Initialization: f[i][0] = 1, f[0][j] = 1. 

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] f = new int[m][n];
     4         f[0][0] = 1;
     5         for(int i = 1; i < m; i++){
     6             f[i][0] = 1;
     7         }
     8         for(int j = 1; j < n; j++){
     9             f[0][j] = 1;
    10         }
    11         for(int i = 1; i < m; i++){
    12             for(int j = 1; j < n; j++){
    13                 f[i][j] = f[i][j - 1] + f[i - 1][j];
    14             }
    15         }
    16         return f[m - 1][n - 1];
    17     }
    18 }

    Solution 3. Dynamic Programming with space optimization, O(m * n) runtime, O(n) space

    Based on the state function, we know that to compute the current row's results, we only need the results from the previous and the current rows. So we can use rolling array to optimize the space complexity to O(n).

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] T = new int[2][n];
     4         for(int j = 0; j < n; j++) {
     5             T[0][j] = 1;
     6         }
     7         for(int i = 1; i < m; i++) {
     8             T[i % 2][0] = 1;
     9             for(int j = 1; j < n; j++) {
    10                 T[i % 2][j] = T[i % 2][j - 1] + T[(i - 1) % 2][j]; 
    11             }
    12         }
    13         return T[(m - 1) % 2][n - 1];
    14     }
    15 }

    Related Problems

    Unique Paths II

    Unique Paths III

  • 相关阅读:
    HDU 1022 Train Problem I
    HDU 1702 ACboy needs your help again!
    HDU 1294 Rooted Trees Problem
    HDU 1027 Ignatius and the Princess II
    HDU 3398 String
    HDU 1709 The Balance
    HDU 2152 Fruit
    HDU 1398 Square Coins
    HDU 3571 N-dimensional Sphere
    HDU 2451 Simple Addition Expression
  • 原文地址:https://www.cnblogs.com/lz87/p/7498450.html
Copyright © 2011-2022 走看看