zoukankan      html  css  js  c++  java
  • [LintCode] Unique Paths

    A robot is located at the top-left corner of a m x n grid.

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.

    How many possible unique paths are there?

    m and n will be at most 100.

    Example

    Given m = 3 and n = 3, return 6.
    Given m = 4 and n = 5, return 35.

    Solution 1. Recursion

    at any given point (x, y), f(x, y) = f(x + 1, y) + f(x, y + 1), we can form a dfs recursive solution using this formula. 

    This recursive solution has overlapping problems. 

    pathsTo(m, n) = pathsTo(m - 1, n) + pathsTo(m, n - 1);

    pathsTo(m - 1, n) = pathsTo(m - 2, n) + pathsTo(m - 1, n - 1);

    pathsTo(m, n - 1) = pathsTo(m, n - 2) +  pathsTo(m - 1, n - 1);

     1 public class Solution {
     2     private int paths = 0;
     3     public int uniquePaths(int m, int n) {
     4         dfs(m - 1, n - 1, 0, 0);
     5         return paths;
     6     }
     7     private void dfs(int dstX, int dstY, int currX, int currY){
     8         if(currX == dstX && currY == dstY){
     9             paths++;
    10             return;
    11         }
    12         if(currX > dstX || currY > dstY){
    13             return;
    14         }
    15         dfs(dstX, dstY, currX + 1, currY);
    16         dfs(dstX, dstY, currX, currY + 1);
    17     }
    18 }

    Solution 2. Dynamic Programming, O(m * n) runtime, O(m * n) space

    State: f[i][j] : the number of different paths from (0, 0) to (i, j)

    Function: f[i][j] = f[i][j - 1] + f[i - 1][j]; 

    Initialization: f[i][0] = 1, f[0][j] = 1. 

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] f = new int[m][n];
     4         f[0][0] = 1;
     5         for(int i = 1; i < m; i++){
     6             f[i][0] = 1;
     7         }
     8         for(int j = 1; j < n; j++){
     9             f[0][j] = 1;
    10         }
    11         for(int i = 1; i < m; i++){
    12             for(int j = 1; j < n; j++){
    13                 f[i][j] = f[i][j - 1] + f[i - 1][j];
    14             }
    15         }
    16         return f[m - 1][n - 1];
    17     }
    18 }

    Solution 3. Dynamic Programming with space optimization, O(m * n) runtime, O(n) space

    Based on the state function, we know that to compute the current row's results, we only need the results from the previous and the current rows. So we can use rolling array to optimize the space complexity to O(n).

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] T = new int[2][n];
     4         for(int j = 0; j < n; j++) {
     5             T[0][j] = 1;
     6         }
     7         for(int i = 1; i < m; i++) {
     8             T[i % 2][0] = 1;
     9             for(int j = 1; j < n; j++) {
    10                 T[i % 2][j] = T[i % 2][j - 1] + T[(i - 1) % 2][j]; 
    11             }
    12         }
    13         return T[(m - 1) % 2][n - 1];
    14     }
    15 }

    Related Problems

    Unique Paths II

    Unique Paths III

  • 相关阅读:
    TFS 安装遇到的问题
    批量将MP4 转换为 MP3
    sqlite like 通配符 ,匹配区分大小写(默认不区分大小写)
    AutoCAD 2007-2012 长度统计工具
    python27 ImportError: No module named site
    github push时,要求密码的问题
    sqlserver中自定义计算函数
    关于win10家庭版不能开启虚拟机的问题
    js的MD5实现
    高德各省行政区显示不同区别颜色(转)
  • 原文地址:https://www.cnblogs.com/lz87/p/7498450.html
Copyright © 2011-2022 走看看