zoukankan      html  css  js  c++  java
  • [LintCode] Unique Paths

    A robot is located at the top-left corner of a m x n grid.

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.

    How many possible unique paths are there?

    m and n will be at most 100.

    Example

    Given m = 3 and n = 3, return 6.
    Given m = 4 and n = 5, return 35.

    Solution 1. Recursion

    at any given point (x, y), f(x, y) = f(x + 1, y) + f(x, y + 1), we can form a dfs recursive solution using this formula. 

    This recursive solution has overlapping problems. 

    pathsTo(m, n) = pathsTo(m - 1, n) + pathsTo(m, n - 1);

    pathsTo(m - 1, n) = pathsTo(m - 2, n) + pathsTo(m - 1, n - 1);

    pathsTo(m, n - 1) = pathsTo(m, n - 2) +  pathsTo(m - 1, n - 1);

     1 public class Solution {
     2     private int paths = 0;
     3     public int uniquePaths(int m, int n) {
     4         dfs(m - 1, n - 1, 0, 0);
     5         return paths;
     6     }
     7     private void dfs(int dstX, int dstY, int currX, int currY){
     8         if(currX == dstX && currY == dstY){
     9             paths++;
    10             return;
    11         }
    12         if(currX > dstX || currY > dstY){
    13             return;
    14         }
    15         dfs(dstX, dstY, currX + 1, currY);
    16         dfs(dstX, dstY, currX, currY + 1);
    17     }
    18 }

    Solution 2. Dynamic Programming, O(m * n) runtime, O(m * n) space

    State: f[i][j] : the number of different paths from (0, 0) to (i, j)

    Function: f[i][j] = f[i][j - 1] + f[i - 1][j]; 

    Initialization: f[i][0] = 1, f[0][j] = 1. 

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] f = new int[m][n];
     4         f[0][0] = 1;
     5         for(int i = 1; i < m; i++){
     6             f[i][0] = 1;
     7         }
     8         for(int j = 1; j < n; j++){
     9             f[0][j] = 1;
    10         }
    11         for(int i = 1; i < m; i++){
    12             for(int j = 1; j < n; j++){
    13                 f[i][j] = f[i][j - 1] + f[i - 1][j];
    14             }
    15         }
    16         return f[m - 1][n - 1];
    17     }
    18 }

    Solution 3. Dynamic Programming with space optimization, O(m * n) runtime, O(n) space

    Based on the state function, we know that to compute the current row's results, we only need the results from the previous and the current rows. So we can use rolling array to optimize the space complexity to O(n).

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] T = new int[2][n];
     4         for(int j = 0; j < n; j++) {
     5             T[0][j] = 1;
     6         }
     7         for(int i = 1; i < m; i++) {
     8             T[i % 2][0] = 1;
     9             for(int j = 1; j < n; j++) {
    10                 T[i % 2][j] = T[i % 2][j - 1] + T[(i - 1) % 2][j]; 
    11             }
    12         }
    13         return T[(m - 1) % 2][n - 1];
    14     }
    15 }

    Related Problems

    Unique Paths II

    Unique Paths III

  • 相关阅读:
    CF700C Break Up
    CF865C Gotta Go Fast
    CF1559D2 Mocha and Diana (Hard Version)
    CF1500C Matrix Sorting
    排列计数机
    CSP-S 2021 退役记
    【做题记录】[NOIP2011 提高组] 观光公交
    【做题记录】构造题
    乱搞
    二维树状数组
  • 原文地址:https://www.cnblogs.com/lz87/p/7498450.html
Copyright © 2011-2022 走看看