zoukankan      html  css  js  c++  java
  • [LintCode] Unique Paths

    A robot is located at the top-left corner of a m x n grid.

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.

    How many possible unique paths are there?

    m and n will be at most 100.

    Example

    Given m = 3 and n = 3, return 6.
    Given m = 4 and n = 5, return 35.

    Solution 1. Recursion

    at any given point (x, y), f(x, y) = f(x + 1, y) + f(x, y + 1), we can form a dfs recursive solution using this formula. 

    This recursive solution has overlapping problems. 

    pathsTo(m, n) = pathsTo(m - 1, n) + pathsTo(m, n - 1);

    pathsTo(m - 1, n) = pathsTo(m - 2, n) + pathsTo(m - 1, n - 1);

    pathsTo(m, n - 1) = pathsTo(m, n - 2) +  pathsTo(m - 1, n - 1);

     1 public class Solution {
     2     private int paths = 0;
     3     public int uniquePaths(int m, int n) {
     4         dfs(m - 1, n - 1, 0, 0);
     5         return paths;
     6     }
     7     private void dfs(int dstX, int dstY, int currX, int currY){
     8         if(currX == dstX && currY == dstY){
     9             paths++;
    10             return;
    11         }
    12         if(currX > dstX || currY > dstY){
    13             return;
    14         }
    15         dfs(dstX, dstY, currX + 1, currY);
    16         dfs(dstX, dstY, currX, currY + 1);
    17     }
    18 }

    Solution 2. Dynamic Programming, O(m * n) runtime, O(m * n) space

    State: f[i][j] : the number of different paths from (0, 0) to (i, j)

    Function: f[i][j] = f[i][j - 1] + f[i - 1][j]; 

    Initialization: f[i][0] = 1, f[0][j] = 1. 

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] f = new int[m][n];
     4         f[0][0] = 1;
     5         for(int i = 1; i < m; i++){
     6             f[i][0] = 1;
     7         }
     8         for(int j = 1; j < n; j++){
     9             f[0][j] = 1;
    10         }
    11         for(int i = 1; i < m; i++){
    12             for(int j = 1; j < n; j++){
    13                 f[i][j] = f[i][j - 1] + f[i - 1][j];
    14             }
    15         }
    16         return f[m - 1][n - 1];
    17     }
    18 }

    Solution 3. Dynamic Programming with space optimization, O(m * n) runtime, O(n) space

    Based on the state function, we know that to compute the current row's results, we only need the results from the previous and the current rows. So we can use rolling array to optimize the space complexity to O(n).

     1 public class Solution {
     2     public int uniquePaths(int m, int n) {
     3         int[][] T = new int[2][n];
     4         for(int j = 0; j < n; j++) {
     5             T[0][j] = 1;
     6         }
     7         for(int i = 1; i < m; i++) {
     8             T[i % 2][0] = 1;
     9             for(int j = 1; j < n; j++) {
    10                 T[i % 2][j] = T[i % 2][j - 1] + T[(i - 1) % 2][j]; 
    11             }
    12         }
    13         return T[(m - 1) % 2][n - 1];
    14     }
    15 }

    Related Problems

    Unique Paths II

    Unique Paths III

  • 相关阅读:
    GAN阶段性小结(损失函数、收敛性分析、训练技巧、应用“高分辨率、domain2domain”、研究方向)
    MMD :maximum mean discrepancy
    Chinese-BERT-wwm
    VGG16学习笔记
    jupyter notebook使用技巧--命令行模式以及在Markdown模式使用的操作(4)
    不同领域公开数据集下载
    数据挖掘竞赛,算法刷题网址汇总
    在keras下实现多个模型的融合
    问题集合
    开源测试数据集合
  • 原文地址:https://www.cnblogs.com/lz87/p/7498450.html
Copyright © 2011-2022 走看看