zoukankan      html  css  js  c++  java
  • [LintCode] Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Solution 1. Recursion.

    For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2),  f(i, n - 2)); 

    This recursive formula provides a straightforward solution.

    Solution 2. Top Down Dynamic Programming

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         // write your code here
     4         if(triangle == null || triangle.length == 0){
     5             return Integer.MAX_VALUE;
     6         }
     7         int row = triangle.length;
     8         int[][] f = new int[row][];
     9         for(int i = 0; i < row; i++){
    10             f[i] = new int[triangle[i].length];
    11         }
    12         
    13         f[0][0] = triangle[0][0];
    14         for(int i = 1; i < row; i++){
    15             f[i][0] = f[i - 1][0] + triangle[i][0];
    16             f[i][i] = f[i - 1][i - 1] + triangle[i][i];
    17         }
    18         
    19         for(int i = 1; i < row; i++){
    20             for(int j = 1; j < i; j++){
    21                 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
    22             }
    23         }
    24         
    25         int min = Integer.MAX_VALUE;
    26         for(int i = 0; i < row; i++){
    27             if(f[row - 1][i] < min){
    28                 min = f[row - 1][i];
    29             }
    30         }
    31         return min;
    32     }
    33 }

    Solution 3. Bottom Up Dynamic Programming with space optimization, 

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         if(triangle == null || triangle.length == 0){
     4             return 0;
     5         }
     6         int n = triangle.length;
     7         int[] path = new int[n];
     8         
     9         for(int i = 0; i < n; i++){
    10             path[i] = triangle[n - 1][i];
    11         }
    12         
    13         for(int i = n - 2; i >= 0; i--){
    14             for(int j = 0; j <= i; j++){
    15                 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return path[0];
    19     }
    20 }

    Related Problems

    Minimum Path Sum

  • 相关阅读:
    centos 7离线安装中文版GitLab
    Oracle表名、列名、约束名的长度限制
    使用sparsecheckout命令克隆“部分”代码
    C专家编程(1)
    搜索相关性
    今日进度
    今日进度
    今日进度
    今日进度
    今日进度
  • 原文地址:https://www.cnblogs.com/lz87/p/7498460.html
Copyright © 2011-2022 走看看