zoukankan      html  css  js  c++  java
  • [LintCode] Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Solution 1. Recursion.

    For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2),  f(i, n - 2)); 

    This recursive formula provides a straightforward solution.

    Solution 2. Top Down Dynamic Programming

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         // write your code here
     4         if(triangle == null || triangle.length == 0){
     5             return Integer.MAX_VALUE;
     6         }
     7         int row = triangle.length;
     8         int[][] f = new int[row][];
     9         for(int i = 0; i < row; i++){
    10             f[i] = new int[triangle[i].length];
    11         }
    12         
    13         f[0][0] = triangle[0][0];
    14         for(int i = 1; i < row; i++){
    15             f[i][0] = f[i - 1][0] + triangle[i][0];
    16             f[i][i] = f[i - 1][i - 1] + triangle[i][i];
    17         }
    18         
    19         for(int i = 1; i < row; i++){
    20             for(int j = 1; j < i; j++){
    21                 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
    22             }
    23         }
    24         
    25         int min = Integer.MAX_VALUE;
    26         for(int i = 0; i < row; i++){
    27             if(f[row - 1][i] < min){
    28                 min = f[row - 1][i];
    29             }
    30         }
    31         return min;
    32     }
    33 }

    Solution 3. Bottom Up Dynamic Programming with space optimization, 

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         if(triangle == null || triangle.length == 0){
     4             return 0;
     5         }
     6         int n = triangle.length;
     7         int[] path = new int[n];
     8         
     9         for(int i = 0; i < n; i++){
    10             path[i] = triangle[n - 1][i];
    11         }
    12         
    13         for(int i = n - 2; i >= 0; i--){
    14             for(int j = 0; j <= i; j++){
    15                 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return path[0];
    19     }
    20 }

    Related Problems

    Minimum Path Sum

  • 相关阅读:
    史上最全web.xml配置文件元素详解
    SpringMVC后台接收list类型的数据的实现方式
    史上最全的maven的pom.xml文件详解
    阿里菜鸟同学迟到的2018年个人总结(文末彩蛋)
    可以落地的DDD到底长什么样?
    欠的债,这一次都还给你们
    主流分布式架构的风流韵事...
    分布式架构的前世今生...
    分布式架构之美~
    征服诱人的Vagrant!
  • 原文地址:https://www.cnblogs.com/lz87/p/7498460.html
Copyright © 2011-2022 走看看