zoukankan      html  css  js  c++  java
  • [LintCode] Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Solution 1. Recursion.

    For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2),  f(i, n - 2)); 

    This recursive formula provides a straightforward solution.

    Solution 2. Top Down Dynamic Programming

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         // write your code here
     4         if(triangle == null || triangle.length == 0){
     5             return Integer.MAX_VALUE;
     6         }
     7         int row = triangle.length;
     8         int[][] f = new int[row][];
     9         for(int i = 0; i < row; i++){
    10             f[i] = new int[triangle[i].length];
    11         }
    12         
    13         f[0][0] = triangle[0][0];
    14         for(int i = 1; i < row; i++){
    15             f[i][0] = f[i - 1][0] + triangle[i][0];
    16             f[i][i] = f[i - 1][i - 1] + triangle[i][i];
    17         }
    18         
    19         for(int i = 1; i < row; i++){
    20             for(int j = 1; j < i; j++){
    21                 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
    22             }
    23         }
    24         
    25         int min = Integer.MAX_VALUE;
    26         for(int i = 0; i < row; i++){
    27             if(f[row - 1][i] < min){
    28                 min = f[row - 1][i];
    29             }
    30         }
    31         return min;
    32     }
    33 }

    Solution 3. Bottom Up Dynamic Programming with space optimization, 

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         if(triangle == null || triangle.length == 0){
     4             return 0;
     5         }
     6         int n = triangle.length;
     7         int[] path = new int[n];
     8         
     9         for(int i = 0; i < n; i++){
    10             path[i] = triangle[n - 1][i];
    11         }
    12         
    13         for(int i = n - 2; i >= 0; i--){
    14             for(int j = 0; j <= i; j++){
    15                 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return path[0];
    19     }
    20 }

    Related Problems

    Minimum Path Sum

  • 相关阅读:
    Oracle安装
    SSIS作业提示所请求的 OLE DB 访问接口 Microsoft.ACE.OLEDB.12.0 尚未注册
    数据库软考易混淆知识之信息化基础、项目管理
    数据库软考易混淆知识之安全性知识
    数据库软考易混淆知识之知识产权
    数据库软考易混淆知识之操作系统
    数据库软考易混淆知识之计算机网络
    数据库软考易混淆知识之软件工程
    数据库软考易混淆知识之程序语言基础
    数据库软考易混淆知识之计算机系统基础
  • 原文地址:https://www.cnblogs.com/lz87/p/7498460.html
Copyright © 2011-2022 走看看