zoukankan      html  css  js  c++  java
  • [LintCode] Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Solution 1. Recursion.

    For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2),  f(i, n - 2)); 

    This recursive formula provides a straightforward solution.

    Solution 2. Top Down Dynamic Programming

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         // write your code here
     4         if(triangle == null || triangle.length == 0){
     5             return Integer.MAX_VALUE;
     6         }
     7         int row = triangle.length;
     8         int[][] f = new int[row][];
     9         for(int i = 0; i < row; i++){
    10             f[i] = new int[triangle[i].length];
    11         }
    12         
    13         f[0][0] = triangle[0][0];
    14         for(int i = 1; i < row; i++){
    15             f[i][0] = f[i - 1][0] + triangle[i][0];
    16             f[i][i] = f[i - 1][i - 1] + triangle[i][i];
    17         }
    18         
    19         for(int i = 1; i < row; i++){
    20             for(int j = 1; j < i; j++){
    21                 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
    22             }
    23         }
    24         
    25         int min = Integer.MAX_VALUE;
    26         for(int i = 0; i < row; i++){
    27             if(f[row - 1][i] < min){
    28                 min = f[row - 1][i];
    29             }
    30         }
    31         return min;
    32     }
    33 }

    Solution 3. Bottom Up Dynamic Programming with space optimization, 

     1 public class Solution {
     2     public int minimumTotal(int[][] triangle) {
     3         if(triangle == null || triangle.length == 0){
     4             return 0;
     5         }
     6         int n = triangle.length;
     7         int[] path = new int[n];
     8         
     9         for(int i = 0; i < n; i++){
    10             path[i] = triangle[n - 1][i];
    11         }
    12         
    13         for(int i = n - 2; i >= 0; i--){
    14             for(int j = 0; j <= i; j++){
    15                 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return path[0];
    19     }
    20 }

    Related Problems

    Minimum Path Sum

  • 相关阅读:
    [充电][ios]ios充电接口
    [ios]app后台运行
    [ios][opengles]GLKit如何搭一个app的框架
    [UML]转:UML类图集中关系的总结
    [UML]转:浅谈UML的概念和模型之UML九种图
    [ios][swift]使用swift闭包进行viewcontroller反向传值
    [ios]纯代码实现UITableViewCell的自定义扩展
    [ios][opengles]opengles纹理贴图
    [ios][swift]swift 怎么去除 optional
    mysql数据库指定ip远程访问
  • 原文地址:https://www.cnblogs.com/lz87/p/7498460.html
Copyright © 2011-2022 走看看