zoukankan      html  css  js  c++  java
  • [LintCode] Knight Shortest Path II

    Given a knight in a chessboard n * m (a binary matrix with 0 as empty and 1 as barrier). the knight initial position is (0, 0) and he wants to reach position (n - 1, m - 1). Find the shortest path to the destination position, return the length of the route. Return -1 if knight can not reached.

    Clarification

    If the knight is at (x, y), he can get to the following positions in one step:

    (x + 1, y + 2)
    (x - 1, y + 2)
    (x + 2, y + 1)
    (x - 2, y + 1)
    
    Example
    [[0,0,0,0],
     [0,0,0,0],
     [0,0,0,0]]
    
    Return 3
    
    [[0,0,0,0],
     [0,0,0,0],
     [0,1,0,0]]
    
    Return -1

    Analysis: This problem is different with Knight Shortest Path in that the knight can only move from left to right, not vice versa. This change makes dynamic programming solution possible as current subproblem's result only depends on the results of subproblems that have been computed. 

    Solution 1. BFS

    Same with Knight Shortest Path solution with only 4 possible directions to move.

     1 //Algorithm 1. BFS
     2 class Point{
     3     protected int x;
     4     protected int y;
     5     public Point(int x, int y){
     6         this.x = x;
     7         this.y = y;
     8     }
     9 }
    10 public class Solution {
    11     private int[] deltaX = {1, -1, 2, -2};
    12     private int[] deltaY = {2, 2, 1, 1};
    13     
    14     public int shortestPath2(boolean[][] grid) {
    15         if(grid == null || grid.length == 0 || grid[0].length == 0){
    16             return -1;
    17         }
    18         Queue<Point> queue = new LinkedList<Point>();
    19         queue.add(new Point(0, 0));
    20         grid[0][0] = true;
    21         int len = 0;
    22         
    23         while(queue.isEmpty() == false){
    24             int size = queue.size();
    25             for(int i = 0; i < size; i++){
    26                 Point curr = queue.poll();
    27                 if(curr.x == grid.length - 1 && curr.y == grid[0].length - 1){
    28                     return len;
    29                 }
    30                 for(int dir = 0; dir < 4; dir++){
    31                     int nextX = curr.x + deltaX[dir];
    32                     int nextY = curr.y + deltaY[dir];
    33                     if(isDirectionValid(grid, nextX, nextY)){
    34                         queue.add(new Point(nextX, nextY));
    35                         grid[nextX][nextY] = true;
    36                     }    
    37                 }
    38             }
    39             len++;
    40         }
    41         return -1;
    42     }
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length || grid[x][y]);
    45     }
    46 }

    Solution 2. Top Down Dynamic Programming

    State: f[i][j]: the minimum number of moves needed from (0, 0) to (i, j)

     1 public class Solution {
     2     private int[] deltaX = {-1, 1, -2, 2};
     3     private int[] deltaY = {-2, -2, -1, -1};
     4     public int shortestPath2(boolean[][] grid) {
     5         if(grid == null || grid.length == 0 || grid[0].length == 0){
     6             return -1;
     7         }
     8         int n = grid.length;
     9         int m = grid[0].length;
    10         int[][] f = new int[n][m];
    11         
    12         for(int i = 0; i < n; i++){
    13             for(int j = 0; j < m; j++){
    14                 f[i][j] = Integer.MAX_VALUE;    
    15             }
    16         }
    17         
    18         f[0][0] = 0;
    19         
    20         for(int j = 0; j < m; j++){
    21             for(int i = 0; i < n; i++){
    22                 if(grid[i][j] == false){
    23                     int min = Integer.MAX_VALUE;
    24                     for(int dir = 0; dir < 4; dir++){
    25                         int x = i + deltaX[dir];
    26                         int y = j + deltaY[dir];
    27                         if(isDirectionValid(grid, x, y)){
    28                             if(f[x][y] < min){
    29                                 min = f[x][y];
    30                             }    
    31                         }
    32                     }
    33                     if(min < Integer.MAX_VALUE){
    34                         f[i][j] = 1 + min;
    35                     } 
    36                 }
    37 
    38             }
    39         }
    40         return f[n - 1][m - 1] == Integer.MAX_VALUE ? -1 : f[n - 1][m - 1];
    41     }
    42     
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length);
    45     }
    46 }

    Related Problems

    Knight Shortest Path

  • 相关阅读:
    函数和递归
    对象
    数组
    For...In 声明
    JavaScript 变量的生存期
    Hadoop Hive与Hbase整合+thrift
    朱子治家格言
    大学
    《孙子兵法》【谋攻第三】
    棋经十三篇
  • 原文地址:https://www.cnblogs.com/lz87/p/7498489.html
Copyright © 2011-2022 走看看