zoukankan      html  css  js  c++  java
  • [LintCode] Knight Shortest Path II

    Given a knight in a chessboard n * m (a binary matrix with 0 as empty and 1 as barrier). the knight initial position is (0, 0) and he wants to reach position (n - 1, m - 1). Find the shortest path to the destination position, return the length of the route. Return -1 if knight can not reached.

    Clarification

    If the knight is at (x, y), he can get to the following positions in one step:

    (x + 1, y + 2)
    (x - 1, y + 2)
    (x + 2, y + 1)
    (x - 2, y + 1)
    
    Example
    [[0,0,0,0],
     [0,0,0,0],
     [0,0,0,0]]
    
    Return 3
    
    [[0,0,0,0],
     [0,0,0,0],
     [0,1,0,0]]
    
    Return -1

    Analysis: This problem is different with Knight Shortest Path in that the knight can only move from left to right, not vice versa. This change makes dynamic programming solution possible as current subproblem's result only depends on the results of subproblems that have been computed. 

    Solution 1. BFS

    Same with Knight Shortest Path solution with only 4 possible directions to move.

     1 //Algorithm 1. BFS
     2 class Point{
     3     protected int x;
     4     protected int y;
     5     public Point(int x, int y){
     6         this.x = x;
     7         this.y = y;
     8     }
     9 }
    10 public class Solution {
    11     private int[] deltaX = {1, -1, 2, -2};
    12     private int[] deltaY = {2, 2, 1, 1};
    13     
    14     public int shortestPath2(boolean[][] grid) {
    15         if(grid == null || grid.length == 0 || grid[0].length == 0){
    16             return -1;
    17         }
    18         Queue<Point> queue = new LinkedList<Point>();
    19         queue.add(new Point(0, 0));
    20         grid[0][0] = true;
    21         int len = 0;
    22         
    23         while(queue.isEmpty() == false){
    24             int size = queue.size();
    25             for(int i = 0; i < size; i++){
    26                 Point curr = queue.poll();
    27                 if(curr.x == grid.length - 1 && curr.y == grid[0].length - 1){
    28                     return len;
    29                 }
    30                 for(int dir = 0; dir < 4; dir++){
    31                     int nextX = curr.x + deltaX[dir];
    32                     int nextY = curr.y + deltaY[dir];
    33                     if(isDirectionValid(grid, nextX, nextY)){
    34                         queue.add(new Point(nextX, nextY));
    35                         grid[nextX][nextY] = true;
    36                     }    
    37                 }
    38             }
    39             len++;
    40         }
    41         return -1;
    42     }
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length || grid[x][y]);
    45     }
    46 }

    Solution 2. Top Down Dynamic Programming

    State: f[i][j]: the minimum number of moves needed from (0, 0) to (i, j)

     1 public class Solution {
     2     private int[] deltaX = {-1, 1, -2, 2};
     3     private int[] deltaY = {-2, -2, -1, -1};
     4     public int shortestPath2(boolean[][] grid) {
     5         if(grid == null || grid.length == 0 || grid[0].length == 0){
     6             return -1;
     7         }
     8         int n = grid.length;
     9         int m = grid[0].length;
    10         int[][] f = new int[n][m];
    11         
    12         for(int i = 0; i < n; i++){
    13             for(int j = 0; j < m; j++){
    14                 f[i][j] = Integer.MAX_VALUE;    
    15             }
    16         }
    17         
    18         f[0][0] = 0;
    19         
    20         for(int j = 0; j < m; j++){
    21             for(int i = 0; i < n; i++){
    22                 if(grid[i][j] == false){
    23                     int min = Integer.MAX_VALUE;
    24                     for(int dir = 0; dir < 4; dir++){
    25                         int x = i + deltaX[dir];
    26                         int y = j + deltaY[dir];
    27                         if(isDirectionValid(grid, x, y)){
    28                             if(f[x][y] < min){
    29                                 min = f[x][y];
    30                             }    
    31                         }
    32                     }
    33                     if(min < Integer.MAX_VALUE){
    34                         f[i][j] = 1 + min;
    35                     } 
    36                 }
    37 
    38             }
    39         }
    40         return f[n - 1][m - 1] == Integer.MAX_VALUE ? -1 : f[n - 1][m - 1];
    41     }
    42     
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length);
    45     }
    46 }

    Related Problems

    Knight Shortest Path

  • 相关阅读:
    Jest | expect常用匹配方法
    typescript | typeScript 笔记
    好用的思维脑图
    VSCode launch.json 配置详解
    各种语法技术栈文档汇总|api文档集合
    浏览器的运行机制
    js字符串转数字长度限制|超过长度有误差
    css对话框| 气泡框| css箭头
    nginx和php-fpm的用户权限
    mac安装redis拓展
  • 原文地址:https://www.cnblogs.com/lz87/p/7498489.html
Copyright © 2011-2022 走看看