zoukankan      html  css  js  c++  java
  • [LintCode] Knight Shortest Path II

    Given a knight in a chessboard n * m (a binary matrix with 0 as empty and 1 as barrier). the knight initial position is (0, 0) and he wants to reach position (n - 1, m - 1). Find the shortest path to the destination position, return the length of the route. Return -1 if knight can not reached.

    Clarification

    If the knight is at (x, y), he can get to the following positions in one step:

    (x + 1, y + 2)
    (x - 1, y + 2)
    (x + 2, y + 1)
    (x - 2, y + 1)
    
    Example
    [[0,0,0,0],
     [0,0,0,0],
     [0,0,0,0]]
    
    Return 3
    
    [[0,0,0,0],
     [0,0,0,0],
     [0,1,0,0]]
    
    Return -1

    Analysis: This problem is different with Knight Shortest Path in that the knight can only move from left to right, not vice versa. This change makes dynamic programming solution possible as current subproblem's result only depends on the results of subproblems that have been computed. 

    Solution 1. BFS

    Same with Knight Shortest Path solution with only 4 possible directions to move.

     1 //Algorithm 1. BFS
     2 class Point{
     3     protected int x;
     4     protected int y;
     5     public Point(int x, int y){
     6         this.x = x;
     7         this.y = y;
     8     }
     9 }
    10 public class Solution {
    11     private int[] deltaX = {1, -1, 2, -2};
    12     private int[] deltaY = {2, 2, 1, 1};
    13     
    14     public int shortestPath2(boolean[][] grid) {
    15         if(grid == null || grid.length == 0 || grid[0].length == 0){
    16             return -1;
    17         }
    18         Queue<Point> queue = new LinkedList<Point>();
    19         queue.add(new Point(0, 0));
    20         grid[0][0] = true;
    21         int len = 0;
    22         
    23         while(queue.isEmpty() == false){
    24             int size = queue.size();
    25             for(int i = 0; i < size; i++){
    26                 Point curr = queue.poll();
    27                 if(curr.x == grid.length - 1 && curr.y == grid[0].length - 1){
    28                     return len;
    29                 }
    30                 for(int dir = 0; dir < 4; dir++){
    31                     int nextX = curr.x + deltaX[dir];
    32                     int nextY = curr.y + deltaY[dir];
    33                     if(isDirectionValid(grid, nextX, nextY)){
    34                         queue.add(new Point(nextX, nextY));
    35                         grid[nextX][nextY] = true;
    36                     }    
    37                 }
    38             }
    39             len++;
    40         }
    41         return -1;
    42     }
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length || grid[x][y]);
    45     }
    46 }

    Solution 2. Top Down Dynamic Programming

    State: f[i][j]: the minimum number of moves needed from (0, 0) to (i, j)

     1 public class Solution {
     2     private int[] deltaX = {-1, 1, -2, 2};
     3     private int[] deltaY = {-2, -2, -1, -1};
     4     public int shortestPath2(boolean[][] grid) {
     5         if(grid == null || grid.length == 0 || grid[0].length == 0){
     6             return -1;
     7         }
     8         int n = grid.length;
     9         int m = grid[0].length;
    10         int[][] f = new int[n][m];
    11         
    12         for(int i = 0; i < n; i++){
    13             for(int j = 0; j < m; j++){
    14                 f[i][j] = Integer.MAX_VALUE;    
    15             }
    16         }
    17         
    18         f[0][0] = 0;
    19         
    20         for(int j = 0; j < m; j++){
    21             for(int i = 0; i < n; i++){
    22                 if(grid[i][j] == false){
    23                     int min = Integer.MAX_VALUE;
    24                     for(int dir = 0; dir < 4; dir++){
    25                         int x = i + deltaX[dir];
    26                         int y = j + deltaY[dir];
    27                         if(isDirectionValid(grid, x, y)){
    28                             if(f[x][y] < min){
    29                                 min = f[x][y];
    30                             }    
    31                         }
    32                     }
    33                     if(min < Integer.MAX_VALUE){
    34                         f[i][j] = 1 + min;
    35                     } 
    36                 }
    37 
    38             }
    39         }
    40         return f[n - 1][m - 1] == Integer.MAX_VALUE ? -1 : f[n - 1][m - 1];
    41     }
    42     
    43     private boolean isDirectionValid(boolean[][] grid, int x, int y){
    44         return !(x < 0 || x >= grid.length || y < 0 || y >= grid[0].length);
    45     }
    46 }

    Related Problems

    Knight Shortest Path

  • 相关阅读:
    Kinect关于PlayerIndex和SkeletonId之间的关系。
    记一次“应用程序之间的通信”过程(1/2)
    C# p-Inovke C++动态链接库
    我写了本破书-swift语言实战晋级
    swift语言实战晋级-第9章 游戏实战-跑酷熊猫-9-10 移除平台与视差滚动
    swift语言实战晋级-第9章 游戏实战-跑酷熊猫-7-8 移动平台的算法
    Swift语言实战晋级-第9章 游戏实战-跑酷熊猫-5-6 踩踏平台是怎么炼成的
    Swift语言实战晋级-第9章 游戏实战-跑酷熊猫-4 熊猫的跳和打滚
    Swift语言实战晋级-第9章 游戏实战-跑酷熊猫-3 显示一个动态的熊猫
    Swift语言实战晋级-第9章 游戏实战-跑酷熊猫-2 创建熊猫类
  • 原文地址:https://www.cnblogs.com/lz87/p/7498489.html
Copyright © 2011-2022 走看看