zoukankan      html  css  js  c++  java
  • [LeetCode 378] Kth Smallest Element in a Sorted Matrix

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.

    Note that it is the kth smallest element in the sorted order, not the kth distinct element.

    Example:

    matrix = [
       [ 1,  5,  9],
       [10, 11, 13],
       [12, 13, 15]
    ],
    k = 8,
    
    return 13.
    

     

    Note:
    You may assume k is always valid, 1 ≤ k ≤ n^2.

    The key observation here is that we have sorted rows and columns separately. The entire matrix is not necessrily sorted top to bottom, left to right. The given example is misleading on purpose. 

    Solution 1. Min heap, O(k * log n) runtime, O(n) space.

    1.  Add the 1st row to a min heap with the value, row and col info.

    2. poll the smallest value out of min heap then add its next value on the same column. Repeat this k times. Because each row is sorted and each column is also sorted, it is guranteed that we always poll the next smallest value in the entire matrix.

    class Solution {
        public int kthSmallest(int[][] matrix, int k) {
            int m = matrix.length, n = matrix[0].length;
            PriorityQueue<int[]> minPq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
            for(int i = 0; i < n; i++) {
                minPq.add(new int[]{matrix[0][i], 0, i});
            }
            
            int ans = 0;
            while(k > 0) {
                int[] curr = minPq.poll();
                ans = curr[0];
                if(curr[1] < matrix.length - 1) {
                    minPq.add(new int[]{matrix[curr[1] + 1][curr[2]], curr[1] + 1, curr[2]});
                }
                k--;
            }
            return ans;
        }
    }

    Variation of Solution 1.

    In the above solution, we add the entire 1st row to the min heap initially. We can instead choose only to add matrix[0][0] and then for each element that is polled from the min heap, we try to add the number that is just to its right and the number that is just to its bottom. However, we will need O(N^2) extra book keeping to track if we have already added a number. 

    Consider this example:  when 3 is polled, we try to add 5 and 7; when 6 is polled, we try to add 7 and 11. If there is no tracking, 7 will be added twice!

    1     3     5

    6    7     12

    11   14     14

    class Solution {
        public int kthSmallest(int[][] matrix, int k) {
            PriorityQueue<int[]> minPq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
            boolean[][] added = new boolean[matrix.length][matrix[0].length];
            minPq.add(new int[]{matrix[0][0], 0, 0});
            added[0][0] = true;
            int ans = 0;
            while(k > 0) {
                int[] curr = minPq.poll();
                ans = curr[0];
                if(curr[1] < matrix.length - 1 && !added[curr[1] + 1][curr[2]]) {
                    minPq.add(new int[]{matrix[curr[1] + 1][curr[2]], curr[1] + 1, curr[2]});
                    added[curr[1] + 1][curr[2]] = true;
                }
                if(curr[2] < matrix[0].length - 1 && !added[curr[1]][curr[2] + 1]) {
                    minPq.add(new int[]{matrix[curr[1]][curr[2] + 1], curr[1], curr[2] + 1});
                    added[curr[1]][curr[2] + 1] = true;
                }
                k--;
            }
            return ans;
        }
    }

    Solution 2. Binary Search on possible answer range, O(maxV * N) runtime, O(1) space.

    Each time we check the middle value MID of the current search range: if there are < k numbers that are <= MID, search on [mid + 1, right]; else search on[left, mid].

    The countSmallerAndEqual method takes O(N + N) which is O(N) runtime. This is because for matrix[i][j],  we have matrix[k][j] >= matrix[i][j], k > i; matrix[i][k] >= matrix[i][j], k > j.

    So as we search for the total number of values that are <= MID, j can only decrease as i increases, we'll never reset j back to matrix[0].length - 1. Essentially, this count method just increases i from 0 to n - 1 and decreases j from n - 1 to 0.

    class Solution {
        public int kthSmallest(int[][] matrix, int k) {
            int l = matrix[0][0], r = matrix[matrix.length - 1][matrix[0].length - 1];
            
            while(l < r - 1) {
                int mid = l + (r - l) / 2;
                if(countSmallerAndEqual(matrix, mid) < k) {
                    l = mid + 1;
                }
                else {
                    r = mid;
                }
            }
            if(countSmallerAndEqual(matrix, l) >= k) {
                return l;
            }
            return r;
        }
        private int countSmallerAndEqual(int[][] matrix, int t) {
            int cnt = 0, j = matrix[0].length - 1;
            for(int i = 0; i < matrix.length; i++) {
                while(j >= 0 && matrix[i][j] > t) {
                    j--;
                }
                cnt += j + 1;
            }
            return cnt;
        }
    }

    Related Problems

    [LeetCode 287] Find the Duplicate Number

    [LeetCode 373] Find K Pairs with Smallest Sums

    [LeetCode 719] Find K-th Smallest Pair Distance

  • 相关阅读:
    docker中 启动所有的容器命令
    使用Docker部署服务
    docker常规操作——启动、停止、重启容器实例
    Docker Swarm 常用命令
    ArcGIS中search窗口不能查询解决办法
    ylpy
    第7章
    ArcGIS 将模型导出为 Python 脚本
    11章代码
    9章代码
  • 原文地址:https://www.cnblogs.com/lz87/p/7498510.html
Copyright © 2011-2022 走看看