zoukankan      html  css  js  c++  java
  • [GeeksForGeeks] Friends Pairing Problem

    Given n friends, each one can remain single or can be paired up with some other friend. Each friend can be paired only once. Find out the total number of ways in which friends can remain single or can be paired up.

    Examples:

    Input  : n = 3
    Output : 4
    Explanation
    {1}, {2}, {3} : all single
    {1}, {2,3} : 2 and 3 paired but 1 is single.
    {1,2}, {3} : 1 and 2 are paired but 3 is single.
    {1,3}, {2} : 1 and 3 are paired but 2 is single.
    Note that {1,2} and {2,1} are considered same.

     The problem itself is pretty straightforward with the following optimal substructure:

    f(n) = f(n - 1) + (n - 1) * f(n - 2);

    To make it more challenging, write a method that generates all possible pairing ways and save them in a list.

    This is a dfs + backtracking question.

    Provided the optimal substructure, we know that for a given person, either he is single or he pairs with one other person.

    If he is single, we simply reduce the problem to be one fewer person smaller;

    If he is paired with another person, we pick one from all the available persons pool.

    To avoid duplicated answers, we only pick person with a bigger number as the pair of the current person.   

    We also need a global flag for each person to indicate if a person has been picked or not. This is needed because when picking 

    a pair, there will be persons left in between these 2 picked persons and these left persons have not been picked yet. The remaining 

    subproblem should include these unpicked persons. By only advancing the current index does not address this issue. 

     1 import java.util.List;
     2 import java.util.ArrayList;
     3 
     4 public class FriendsPairing {
     5     //f(n) = f(n - 1) + (n - 1) * f(n - 2);
     6     //Recursive solution
     7     public static int pairingWaysRecursion(int n) {
     8         if(n <= 1) {
     9             return 1;
    10         }
    11         return pairingWaysRecursion(n - 1) + (n - 1) * pairingWaysRecursion(n - 2);
    12     }
    13     //Dynamic Programming 
    14     public static int pairingWaysDp(int n) {
    15         int[] T = new int[n + 1];
    16         T[0] = 1;
    17         T[1] = 1;
    18         for(int i = 2; i <= n; i++) {
    19             T[i] = T[i - 1] + (i - 1) * T[i - 2];
    20         }
    21         return T[n];
    22     }
    23     //Dfs + backtracking to get all pairing ways
    24     public static List<List<List<Integer>>> getAllPairingWays(int n) {
    25         boolean[] available = new boolean[n + 1];
    26         for(int i = 1; i <= n; i++) {
    27             available[i] = true;
    28         }
    29         List<List<List<Integer>>> ways = new ArrayList<>();
    30         getAllWaysDfs(ways, new ArrayList<>(), available, n, 1, 0);
    31         return ways;
    32     }
    33     private static void getAllWaysDfs(List<List<List<Integer>>> ways, 
    34                                 List<List<Integer>> way,
    35                                 boolean[] available, int n, int currIdx, int addedCount) {
    36         if(addedCount == n) {
    37             ways.add(new ArrayList<List<Integer>>(way));
    38             return;
    39         }
    40         for(int i = currIdx; i <= n; i++) {
    41             if(available[i]) {
    42                 ArrayList<Integer> group1 = new ArrayList<Integer>();
    43                 group1.add(i);
    44                 way.add(group1);
    45                 available[i] = false;
    46                 getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 1);            
    47                 way.remove(way.size() - 1);    
    48                 
    49                 int j = i + 1;
    50                 for(; j <= n; j++) {
    51                     if(available[j]) {
    52                         ArrayList<Integer> group2 = new ArrayList<Integer>();
    53                         group2.add(i);
    54                         group2.add(j);
    55                         way.add(group2);
    56                         available[j] = false;
    57                         getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 2);        
    58                         way.remove(way.size() - 1);
    59                         available[j] = true;
    60                     }
    61                 }
    62                 available[i] = true;
    63             }
    64         }
    65     }
    66     public static void main(String[] args) {
    67         System.out.println(pairingWaysDp(3));
    68         System.out.println(pairingWaysDp(6));
    69         List<List<List<Integer>>> ways = getAllPairingWays(3);
    70         for(int i = 0; i < ways.size(); i++) {
    71             for(int j = 0; j < ways.get(i).size(); j++) {
    72                 for(int k = 0; k < ways.get(i).get(j).size(); k++) {
    73                     System.out.print(ways.get(i).get(j).get(k) + ",");
    74                 }
    75                 System.out.print("  ");
    76             }
    77             System.out.println();
    78         }
    79     }
    80 }

    Related Problems 

    Permutations 

    Permutations II





  • 相关阅读:
    JAVA_SE基础——35.static修饰成员函数
    Mybatis环境搭建
    搭建Mybatis环境遇到的问题
    Windows10系统下,彻底删除卸载MySQL
    StringBuffer类append方法的用法和用途
    Listener监听器
    Filter过滤器
    JSTL
    EL表达式
    JSP
  • 原文地址:https://www.cnblogs.com/lz87/p/7594929.html
Copyright © 2011-2022 走看看