zoukankan      html  css  js  c++  java
  • [GeeksForGeeks] Friends Pairing Problem

    Given n friends, each one can remain single or can be paired up with some other friend. Each friend can be paired only once. Find out the total number of ways in which friends can remain single or can be paired up.

    Examples:

    Input  : n = 3
    Output : 4
    Explanation
    {1}, {2}, {3} : all single
    {1}, {2,3} : 2 and 3 paired but 1 is single.
    {1,2}, {3} : 1 and 2 are paired but 3 is single.
    {1,3}, {2} : 1 and 3 are paired but 2 is single.
    Note that {1,2} and {2,1} are considered same.

     The problem itself is pretty straightforward with the following optimal substructure:

    f(n) = f(n - 1) + (n - 1) * f(n - 2);

    To make it more challenging, write a method that generates all possible pairing ways and save them in a list.

    This is a dfs + backtracking question.

    Provided the optimal substructure, we know that for a given person, either he is single or he pairs with one other person.

    If he is single, we simply reduce the problem to be one fewer person smaller;

    If he is paired with another person, we pick one from all the available persons pool.

    To avoid duplicated answers, we only pick person with a bigger number as the pair of the current person.   

    We also need a global flag for each person to indicate if a person has been picked or not. This is needed because when picking 

    a pair, there will be persons left in between these 2 picked persons and these left persons have not been picked yet. The remaining 

    subproblem should include these unpicked persons. By only advancing the current index does not address this issue. 

     1 import java.util.List;
     2 import java.util.ArrayList;
     3 
     4 public class FriendsPairing {
     5     //f(n) = f(n - 1) + (n - 1) * f(n - 2);
     6     //Recursive solution
     7     public static int pairingWaysRecursion(int n) {
     8         if(n <= 1) {
     9             return 1;
    10         }
    11         return pairingWaysRecursion(n - 1) + (n - 1) * pairingWaysRecursion(n - 2);
    12     }
    13     //Dynamic Programming 
    14     public static int pairingWaysDp(int n) {
    15         int[] T = new int[n + 1];
    16         T[0] = 1;
    17         T[1] = 1;
    18         for(int i = 2; i <= n; i++) {
    19             T[i] = T[i - 1] + (i - 1) * T[i - 2];
    20         }
    21         return T[n];
    22     }
    23     //Dfs + backtracking to get all pairing ways
    24     public static List<List<List<Integer>>> getAllPairingWays(int n) {
    25         boolean[] available = new boolean[n + 1];
    26         for(int i = 1; i <= n; i++) {
    27             available[i] = true;
    28         }
    29         List<List<List<Integer>>> ways = new ArrayList<>();
    30         getAllWaysDfs(ways, new ArrayList<>(), available, n, 1, 0);
    31         return ways;
    32     }
    33     private static void getAllWaysDfs(List<List<List<Integer>>> ways, 
    34                                 List<List<Integer>> way,
    35                                 boolean[] available, int n, int currIdx, int addedCount) {
    36         if(addedCount == n) {
    37             ways.add(new ArrayList<List<Integer>>(way));
    38             return;
    39         }
    40         for(int i = currIdx; i <= n; i++) {
    41             if(available[i]) {
    42                 ArrayList<Integer> group1 = new ArrayList<Integer>();
    43                 group1.add(i);
    44                 way.add(group1);
    45                 available[i] = false;
    46                 getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 1);            
    47                 way.remove(way.size() - 1);    
    48                 
    49                 int j = i + 1;
    50                 for(; j <= n; j++) {
    51                     if(available[j]) {
    52                         ArrayList<Integer> group2 = new ArrayList<Integer>();
    53                         group2.add(i);
    54                         group2.add(j);
    55                         way.add(group2);
    56                         available[j] = false;
    57                         getAllWaysDfs(ways, way, available, n, i + 1, addedCount + 2);        
    58                         way.remove(way.size() - 1);
    59                         available[j] = true;
    60                     }
    61                 }
    62                 available[i] = true;
    63             }
    64         }
    65     }
    66     public static void main(String[] args) {
    67         System.out.println(pairingWaysDp(3));
    68         System.out.println(pairingWaysDp(6));
    69         List<List<List<Integer>>> ways = getAllPairingWays(3);
    70         for(int i = 0; i < ways.size(); i++) {
    71             for(int j = 0; j < ways.get(i).size(); j++) {
    72                 for(int k = 0; k < ways.get(i).get(j).size(); k++) {
    73                     System.out.print(ways.get(i).get(j).get(k) + ",");
    74                 }
    75                 System.out.print("  ");
    76             }
    77             System.out.println();
    78         }
    79     }
    80 }

    Related Problems 

    Permutations 

    Permutations II





  • 相关阅读:
    新版vscode配置eslint自动格式化代码
    vue cli4 拿到一个项目后
    windows 网页打不开github网站
    PHP+jQuery-ui拖动浮动层排序并保存到数据库实例
    php+html5兼容手机端的图片选取裁剪上传实例
    PHP+MySQL设计高效发表评论留言功能
    5种PHP生成图片验证码实例
    PHP+jPaginate插件制作无刷新分页实例
    PHP+Mysql实现网站顶和踩投票功能实例
    jQuery+PHP实现购物商城常用的星级评分效果
  • 原文地址:https://www.cnblogs.com/lz87/p/7594929.html
Copyright © 2011-2022 走看看