zoukankan      html  css  js  c++  java
  • Lists.newArrayList()的import与依赖

    和new ArrayList<>()一个样,都能推导尖括号里的数据类型

    import:

    import com.google.common.collect.Lists;
    

      

    依赖

    <dependency>
          <groupId>com.google.guava</groupId>
          <artifactId>guava</artifactId>
          <version>28.1-jre</version>
    </dependency>

    搬运一下源码吧,虽然我也不会看:

    /*
     * Copyright (C) 2007 The Guava Authors
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     * http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    package com.google.common.collect;
    
    import static com.google.common.base.Preconditions.checkArgument;
    import static com.google.common.base.Preconditions.checkElementIndex;
    import static com.google.common.base.Preconditions.checkNotNull;
    import static com.google.common.base.Preconditions.checkPositionIndex;
    import static com.google.common.base.Preconditions.checkPositionIndexes;
    import static com.google.common.base.Preconditions.checkState;
    import static com.google.common.collect.CollectPreconditions.checkNonnegative;
    import static com.google.common.collect.CollectPreconditions.checkRemove;
    
    import com.google.common.annotations.Beta;
    import com.google.common.annotations.GwtCompatible;
    import com.google.common.annotations.GwtIncompatible;
    import com.google.common.annotations.VisibleForTesting;
    import com.google.common.base.Function;
    import com.google.common.base.Objects;
    import com.google.common.math.IntMath;
    import com.google.common.primitives.Ints;
    import java.io.Serializable;
    import java.math.RoundingMode;
    import java.util.AbstractList;
    import java.util.AbstractSequentialList;
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Collection;
    import java.util.Collections;
    import java.util.Iterator;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.ListIterator;
    import java.util.NoSuchElementException;
    import java.util.RandomAccess;
    import java.util.concurrent.CopyOnWriteArrayList;
    import java.util.function.Predicate;
    import org.checkerframework.checker.nullness.qual.Nullable;
    
    /**
     * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
     * {@link Sets}, {@link Maps} and {@link Queues}.
     *
     * <p>See the Guava User Guide article on <a href=
     * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> {@code Lists}</a>.
     *
     * @author Kevin Bourrillion
     * @author Mike Bostock
     * @author Louis Wasserman
     * @since 2.0
     */
    @GwtCompatible(emulated = true)
    public final class Lists {
      private Lists() {}
    
      // ArrayList
    
      /**
       * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
       *
       * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
       *
       * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
       * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor}
       * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
       */
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayList() {
        return new ArrayList<>();
      }
    
      /**
       * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
       *
       * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
       * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
       * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
       * might be null, or you need support for {@link List#set(int, Object)}, use {@link
       * Arrays#asList}.
       *
       * <p>Note that even when you do need the ability to add or remove, this method provides only a
       * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
       * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
       * not actually very useful and will likely be deprecated in the future.
       */
      @SafeVarargs
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayList(E... elements) {
        checkNotNull(elements); // for GWT
        // Avoid integer overflow when a large array is passed in
        int capacity = computeArrayListCapacity(elements.length);
        ArrayList<E> list = new ArrayList<>(capacity);
        Collections.addAll(list, elements);
        return list;
      }
    
      /**
       * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
       * shortcut for creating an empty list then calling {@link Iterables#addAll}.
       *
       * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
       * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
       * FluentIterable} and call {@code elements.toList()}.)
       *
       * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
       * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection)
       * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
       * syntax</a>.
       */
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) {
        checkNotNull(elements); // for GWT
        // Let ArrayList's sizing logic work, if possible
        return (elements instanceof Collection)
            ? new ArrayList<>(Collections2.cast(elements))
            : newArrayList(elements.iterator());
      }
    
      /**
       * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
       * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
       *
       * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
       * ImmutableList#copyOf(Iterator)} instead.
       */
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) {
        ArrayList<E> list = newArrayList();
        Iterators.addAll(list, elements);
        return list;
      }
    
      @VisibleForTesting
      static int computeArrayListCapacity(int arraySize) {
        checkNonnegative(arraySize, "arraySize");
    
        // TODO(kevinb): Figure out the right behavior, and document it
        return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
      }
    
      /**
       * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
       * simply delegates to {@link ArrayList#ArrayList(int)}.
       *
       * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
       * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)}
       * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
       * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors
       * very wisely did not accept varargs.)
       *
       * @param initialArraySize the exact size of the initial backing array for the returned array list
       *     ({@code ArrayList} documentation calls this value the "capacity")
       * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
       *     reaches {@code initialArraySize + 1}
       * @throws IllegalArgumentException if {@code initialArraySize} is negative
       */
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) {
        checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
        return new ArrayList<>(initialArraySize);
      }
    
      /**
       * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
       * unspecified amount of padding; you almost certainly mean to call {@link
       * #newArrayListWithCapacity} (see that method for further advice on usage).
       *
       * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
       * some amount of padding, it's best if you choose your desired amount explicitly.
       *
       * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
       * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
       *     elements
       * @throws IllegalArgumentException if {@code estimatedSize} is negative
       */
      @GwtCompatible(serializable = true)
      public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) {
        return new ArrayList<>(computeArrayListCapacity(estimatedSize));
      }
    
      // LinkedList
    
      /**
       * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
       *
       * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
       * instead.
       *
       * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
       * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
       * spent a lot of time benchmarking your specific needs, use one of those instead.
       *
       * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
       * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList()
       * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
       * syntax</a>.
       */
      @GwtCompatible(serializable = true)
      public static <E> LinkedList<E> newLinkedList() {
        return new LinkedList<>();
      }
    
      /**
       * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
       * shortcut for creating an empty list then calling {@link Iterables#addAll}.
       *
       * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
       * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
       * FluentIterable} and call {@code elements.toList()}.)
       *
       * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
       * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
       * spent a lot of time benchmarking your specific needs, use one of those instead.
       *
       * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
       * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection)
       * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
       * syntax</a>.
       */
      @GwtCompatible(serializable = true)
      public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) {
        LinkedList<E> list = newLinkedList();
        Iterables.addAll(list, elements);
        return list;
      }
    
      /**
       * Creates an empty {@code CopyOnWriteArrayList} instance.
       *
       * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
       * instead.
       *
       * @return a new, empty {@code CopyOnWriteArrayList}
       * @since 12.0
       */
      @GwtIncompatible // CopyOnWriteArrayList
      public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
        return new CopyOnWriteArrayList<>();
      }
    
      /**
       * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
       *
       * @param elements the elements that the list should contain, in order
       * @return a new {@code CopyOnWriteArrayList} containing those elements
       * @since 12.0
       */
      @GwtIncompatible // CopyOnWriteArrayList
      public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
          Iterable<? extends E> elements) {
        // We copy elements to an ArrayList first, rather than incurring the
        // quadratic cost of adding them to the COWAL directly.
        Collection<? extends E> elementsCollection =
            (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements);
        return new CopyOnWriteArrayList<>(elementsCollection);
      }
    
      /**
       * Returns an unmodifiable list containing the specified first element and backed by the specified
       * array of additional elements. Changes to the {@code rest} array will be reflected in the
       * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
       *
       * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
       * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
       *
       * <p>The returned list is serializable and implements {@link RandomAccess}.
       *
       * @param first the first element
       * @param rest an array of additional elements, possibly empty
       * @return an unmodifiable list containing the specified elements
       */
      public static <E> List<E> asList(@Nullable E first, E[] rest) {
        return new OnePlusArrayList<>(first, rest);
      }
    
      /**
       * Returns an unmodifiable list containing the specified first and second element, and backed by
       * the specified array of additional elements. Changes to the {@code rest} array will be reflected
       * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
       *
       * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
       * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
       * argument count.
       *
       * <p>The returned list is serializable and implements {@link RandomAccess}.
       *
       * @param first the first element
       * @param second the second element
       * @param rest an array of additional elements, possibly empty
       * @return an unmodifiable list containing the specified elements
       */
      public static <E> List<E> asList(@Nullable E first, @Nullable E second, E[] rest) {
        return new TwoPlusArrayList<>(first, second, rest);
      }
    
      /** @see Lists#asList(Object, Object[]) */
      private static class OnePlusArrayList<E> extends AbstractList<E>
          implements Serializable, RandomAccess {
        final @Nullable E first;
        final E[] rest;
    
        OnePlusArrayList(@Nullable E first, E[] rest) {
          this.first = first;
          this.rest = checkNotNull(rest);
        }
    
        @Override
        public int size() {
          return IntMath.saturatedAdd(rest.length, 1);
        }
    
        @Override
        public E get(int index) {
          // check explicitly so the IOOBE will have the right message
          checkElementIndex(index, size());
          return (index == 0) ? first : rest[index - 1];
        }
    
        private static final long serialVersionUID = 0;
      }
    
      /** @see Lists#asList(Object, Object, Object[]) */
      private static class TwoPlusArrayList<E> extends AbstractList<E>
          implements Serializable, RandomAccess {
        final @Nullable E first;
        final @Nullable E second;
        final E[] rest;
    
        TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) {
          this.first = first;
          this.second = second;
          this.rest = checkNotNull(rest);
        }
    
        @Override
        public int size() {
          return IntMath.saturatedAdd(rest.length, 2);
        }
    
        @Override
        public E get(int index) {
          switch (index) {
            case 0:
              return first;
            case 1:
              return second;
            default:
              // check explicitly so the IOOBE will have the right message
              checkElementIndex(index, size());
              return rest[index - 2];
          }
        }
    
        private static final long serialVersionUID = 0;
      }
    
      /**
       * Returns every possible list that can be formed by choosing one element from each of the given
       * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
       * product</a>" of the lists. For example:
       *
       * <pre>{@code
       * Lists.cartesianProduct(ImmutableList.of(
       *     ImmutableList.of(1, 2),
       *     ImmutableList.of("A", "B", "C")))
       * }</pre>
       *
       * <p>returns a list containing six lists in the following order:
       *
       * <ul>
       *   <li>{@code ImmutableList.of(1, "A")}
       *   <li>{@code ImmutableList.of(1, "B")}
       *   <li>{@code ImmutableList.of(1, "C")}
       *   <li>{@code ImmutableList.of(2, "A")}
       *   <li>{@code ImmutableList.of(2, "B")}
       *   <li>{@code ImmutableList.of(2, "C")}
       * </ul>
       *
       * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
       * products that you would get from nesting for loops:
       *
       * <pre>{@code
       * for (B b0 : lists.get(0)) {
       *   for (B b1 : lists.get(1)) {
       *     ...
       *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
       *     // operate on tuple
       *   }
       * }
       * }</pre>
       *
       * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
       * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
       * list (counter-intuitive, but mathematically consistent).
       *
       * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
       * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
       * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
       * is iterated are the individual lists created, and these are not retained after iteration.
       *
       * @param lists the lists to choose elements from, in the order that the elements chosen from
       *     those lists should appear in the resulting lists
       * @param <B> any common base class shared by all axes (often just {@link Object})
       * @return the Cartesian product, as an immutable list containing immutable lists
       * @throws IllegalArgumentException if the size of the cartesian product would be greater than
       *     {@link Integer#MAX_VALUE}
       * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
       *     a provided list is null
       * @since 19.0
       */
      public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
        return CartesianList.create(lists);
      }
    
      /**
       * Returns every possible list that can be formed by choosing one element from each of the given
       * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
       * product</a>" of the lists. For example:
       *
       * <pre>{@code
       * Lists.cartesianProduct(ImmutableList.of(
       *     ImmutableList.of(1, 2),
       *     ImmutableList.of("A", "B", "C")))
       * }</pre>
       *
       * <p>returns a list containing six lists in the following order:
       *
       * <ul>
       *   <li>{@code ImmutableList.of(1, "A")}
       *   <li>{@code ImmutableList.of(1, "B")}
       *   <li>{@code ImmutableList.of(1, "C")}
       *   <li>{@code ImmutableList.of(2, "A")}
       *   <li>{@code ImmutableList.of(2, "B")}
       *   <li>{@code ImmutableList.of(2, "C")}
       * </ul>
       *
       * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
       * products that you would get from nesting for loops:
       *
       * <pre>{@code
       * for (B b0 : lists.get(0)) {
       *   for (B b1 : lists.get(1)) {
       *     ...
       *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
       *     // operate on tuple
       *   }
       * }
       * }</pre>
       *
       * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
       * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
       * list (counter-intuitive, but mathematically consistent).
       *
       * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
       * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
       * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
       * is iterated are the individual lists created, and these are not retained after iteration.
       *
       * @param lists the lists to choose elements from, in the order that the elements chosen from
       *     those lists should appear in the resulting lists
       * @param <B> any common base class shared by all axes (often just {@link Object})
       * @return the Cartesian product, as an immutable list containing immutable lists
       * @throws IllegalArgumentException if the size of the cartesian product would be greater than
       *     {@link Integer#MAX_VALUE}
       * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
       *     a provided list is null
       * @since 19.0
       */
      @SafeVarargs
      public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
        return cartesianProduct(Arrays.asList(lists));
      }
    
      /**
       * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
       * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
       * in the returned list and vice versa.
       *
       * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
       * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
       * in the returned list.
       *
       * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
       * to be a view, but it means that the function will be applied many times for bulk operations
       * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
       * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
       * view, copy the returned list into a new list of your choosing.
       *
       * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
       * list is threadsafe if the supplied list and function are.
       *
       * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
       * Collections2#transform} or {@link Iterables#transform}.
       *
       * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
       * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
       * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
       * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
       * serialize the copy. Other methods similar to this do not implement serialization at all for
       * this reason.
       *
       * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
       * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
       * to migrate to streams.
       */
      public static <F, T> List<T> transform(
          List<F> fromList, Function<? super F, ? extends T> function) {
        return (fromList instanceof RandomAccess)
            ? new TransformingRandomAccessList<>(fromList, function)
            : new TransformingSequentialList<>(fromList, function);
      }
    
      /**
       * Implementation of a sequential transforming list.
       *
       * @see Lists#transform
       */
      private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T>
          implements Serializable {
        final List<F> fromList;
        final Function<? super F, ? extends T> function;
    
        TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
          this.fromList = checkNotNull(fromList);
          this.function = checkNotNull(function);
        }
    
        /**
         * The default implementation inherited is based on iteration and removal of each element which
         * can be overkill. That's why we forward this call directly to the backing list.
         */
        @Override
        public void clear() {
          fromList.clear();
        }
    
        @Override
        public int size() {
          return fromList.size();
        }
    
        @Override
        public ListIterator<T> listIterator(final int index) {
          return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
            @Override
            T transform(F from) {
              return function.apply(from);
            }
          };
        }
    
        @Override
        public boolean removeIf(Predicate<? super T> filter) {
          checkNotNull(filter);
          return fromList.removeIf(element -> filter.test(function.apply(element)));
        }
    
        private static final long serialVersionUID = 0;
      }
    
      /**
       * Implementation of a transforming random access list. We try to make as many of these methods
       * pass-through to the source list as possible so that the performance characteristics of the
       * source list and transformed list are similar.
       *
       * @see Lists#transform
       */
      private static class TransformingRandomAccessList<F, T> extends AbstractList<T>
          implements RandomAccess, Serializable {
        final List<F> fromList;
        final Function<? super F, ? extends T> function;
    
        TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
          this.fromList = checkNotNull(fromList);
          this.function = checkNotNull(function);
        }
    
        @Override
        public void clear() {
          fromList.clear();
        }
    
        @Override
        public T get(int index) {
          return function.apply(fromList.get(index));
        }
    
        @Override
        public Iterator<T> iterator() {
          return listIterator();
        }
    
        @Override
        public ListIterator<T> listIterator(int index) {
          return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
            @Override
            T transform(F from) {
              return function.apply(from);
            }
          };
        }
    
        @Override
        public boolean isEmpty() {
          return fromList.isEmpty();
        }
    
        @Override
        public boolean removeIf(Predicate<? super T> filter) {
          checkNotNull(filter);
          return fromList.removeIf(element -> filter.test(function.apply(element)));
        }
    
        @Override
        public T remove(int index) {
          return function.apply(fromList.remove(index));
        }
    
        @Override
        public int size() {
          return fromList.size();
        }
    
        private static final long serialVersionUID = 0;
      }
    
      /**
       * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
       * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
       * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
       * containing two inner lists of three and two elements, all in the original order.
       *
       * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
       * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
       * int)}, and are subject to all the usual caveats about modification as explained in that API.
       *
       * @param list the list to return consecutive sublists of
       * @param size the desired size of each sublist (the last may be smaller)
       * @return a list of consecutive sublists
       * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
       */
      public static <T> List<List<T>> partition(List<T> list, int size) {
        checkNotNull(list);
        checkArgument(size > 0);
        return (list instanceof RandomAccess)
            ? new RandomAccessPartition<>(list, size)
            : new Partition<>(list, size);
      }
    
      private static class Partition<T> extends AbstractList<List<T>> {
        final List<T> list;
        final int size;
    
        Partition(List<T> list, int size) {
          this.list = list;
          this.size = size;
        }
    
        @Override
        public List<T> get(int index) {
          checkElementIndex(index, size());
          int start = index * size;
          int end = Math.min(start + size, list.size());
          return list.subList(start, end);
        }
    
        @Override
        public int size() {
          return IntMath.divide(list.size(), size, RoundingMode.CEILING);
        }
    
        @Override
        public boolean isEmpty() {
          return list.isEmpty();
        }
      }
    
      private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess {
        RandomAccessPartition(List<T> list, int size) {
          super(list, size);
        }
      }
    
      /**
       * Returns a view of the specified string as an immutable list of {@code Character} values.
       *
       * @since 7.0
       */
      public static ImmutableList<Character> charactersOf(String string) {
        return new StringAsImmutableList(checkNotNull(string));
      }
    
      /**
       * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
       * {@code sequence} as a sequence of Unicode code units. The view does not support any
       * modification operations, but reflects any changes to the underlying character sequence.
       *
       * @param sequence the character sequence to view as a {@code List} of characters
       * @return an {@code List<Character>} view of the character sequence
       * @since 7.0
       */
      @Beta
      public static List<Character> charactersOf(CharSequence sequence) {
        return new CharSequenceAsList(checkNotNull(sequence));
      }
    
      @SuppressWarnings("serial") // serialized using ImmutableList serialization
      private static final class StringAsImmutableList extends ImmutableList<Character> {
    
        private final String string;
    
        StringAsImmutableList(String string) {
          this.string = string;
        }
    
        @Override
        public int indexOf(@Nullable Object object) {
          return (object instanceof Character) ? string.indexOf((Character) object) : -1;
        }
    
        @Override
        public int lastIndexOf(@Nullable Object object) {
          return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
        }
    
        @Override
        public ImmutableList<Character> subList(int fromIndex, int toIndex) {
          checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
          return charactersOf(string.substring(fromIndex, toIndex));
        }
    
        @Override
        boolean isPartialView() {
          return false;
        }
    
        @Override
        public Character get(int index) {
          checkElementIndex(index, size()); // for GWT
          return string.charAt(index);
        }
    
        @Override
        public int size() {
          return string.length();
        }
      }
    
      private static final class CharSequenceAsList extends AbstractList<Character> {
        private final CharSequence sequence;
    
        CharSequenceAsList(CharSequence sequence) {
          this.sequence = sequence;
        }
    
        @Override
        public Character get(int index) {
          checkElementIndex(index, size()); // for GWT
          return sequence.charAt(index);
        }
    
        @Override
        public int size() {
          return sequence.length();
        }
      }
    
      /**
       * Returns a reversed view of the specified list. For example, {@code
       * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
       * list is backed by this list, so changes in the returned list are reflected in this list, and
       * vice-versa. The returned list supports all of the optional list operations supported by this
       * list.
       *
       * <p>The returned list is random-access if the specified list is random access.
       *
       * @since 7.0
       */
      public static <T> List<T> reverse(List<T> list) {
        if (list instanceof ImmutableList) {
          return ((ImmutableList<T>) list).reverse();
        } else if (list instanceof ReverseList) {
          return ((ReverseList<T>) list).getForwardList();
        } else if (list instanceof RandomAccess) {
          return new RandomAccessReverseList<>(list);
        } else {
          return new ReverseList<>(list);
        }
      }
    
      private static class ReverseList<T> extends AbstractList<T> {
        private final List<T> forwardList;
    
        ReverseList(List<T> forwardList) {
          this.forwardList = checkNotNull(forwardList);
        }
    
        List<T> getForwardList() {
          return forwardList;
        }
    
        private int reverseIndex(int index) {
          int size = size();
          checkElementIndex(index, size);
          return (size - 1) - index;
        }
    
        private int reversePosition(int index) {
          int size = size();
          checkPositionIndex(index, size);
          return size - index;
        }
    
        @Override
        public void add(int index, @Nullable T element) {
          forwardList.add(reversePosition(index), element);
        }
    
        @Override
        public void clear() {
          forwardList.clear();
        }
    
        @Override
        public T remove(int index) {
          return forwardList.remove(reverseIndex(index));
        }
    
        @Override
        protected void removeRange(int fromIndex, int toIndex) {
          subList(fromIndex, toIndex).clear();
        }
    
        @Override
        public T set(int index, @Nullable T element) {
          return forwardList.set(reverseIndex(index), element);
        }
    
        @Override
        public T get(int index) {
          return forwardList.get(reverseIndex(index));
        }
    
        @Override
        public int size() {
          return forwardList.size();
        }
    
        @Override
        public List<T> subList(int fromIndex, int toIndex) {
          checkPositionIndexes(fromIndex, toIndex, size());
          return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
        }
    
        @Override
        public Iterator<T> iterator() {
          return listIterator();
        }
    
        @Override
        public ListIterator<T> listIterator(int index) {
          int start = reversePosition(index);
          final ListIterator<T> forwardIterator = forwardList.listIterator(start);
          return new ListIterator<T>() {
    
            boolean canRemoveOrSet;
    
            @Override
            public void add(T e) {
              forwardIterator.add(e);
              forwardIterator.previous();
              canRemoveOrSet = false;
            }
    
            @Override
            public boolean hasNext() {
              return forwardIterator.hasPrevious();
            }
    
            @Override
            public boolean hasPrevious() {
              return forwardIterator.hasNext();
            }
    
            @Override
            public T next() {
              if (!hasNext()) {
                throw new NoSuchElementException();
              }
              canRemoveOrSet = true;
              return forwardIterator.previous();
            }
    
            @Override
            public int nextIndex() {
              return reversePosition(forwardIterator.nextIndex());
            }
    
            @Override
            public T previous() {
              if (!hasPrevious()) {
                throw new NoSuchElementException();
              }
              canRemoveOrSet = true;
              return forwardIterator.next();
            }
    
            @Override
            public int previousIndex() {
              return nextIndex() - 1;
            }
    
            @Override
            public void remove() {
              checkRemove(canRemoveOrSet);
              forwardIterator.remove();
              canRemoveOrSet = false;
            }
    
            @Override
            public void set(T e) {
              checkState(canRemoveOrSet);
              forwardIterator.set(e);
            }
          };
        }
      }
    
      private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess {
        RandomAccessReverseList(List<T> forwardList) {
          super(forwardList);
        }
      }
    
      /** An implementation of {@link List#hashCode()}. */
      static int hashCodeImpl(List<?> list) {
        // TODO(lowasser): worth optimizing for RandomAccess?
        int hashCode = 1;
        for (Object o : list) {
          hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
    
          hashCode = ~~hashCode;
          // needed to deal with GWT integer overflow
        }
        return hashCode;
      }
    
      /** An implementation of {@link List#equals(Object)}. */
      static boolean equalsImpl(List<?> thisList, @Nullable Object other) {
        if (other == checkNotNull(thisList)) {
          return true;
        }
        if (!(other instanceof List)) {
          return false;
        }
        List<?> otherList = (List<?>) other;
        int size = thisList.size();
        if (size != otherList.size()) {
          return false;
        }
        if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
          // avoid allocation and use the faster loop
          for (int i = 0; i < size; i++) {
            if (!Objects.equal(thisList.get(i), otherList.get(i))) {
              return false;
            }
          }
          return true;
        } else {
          return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
        }
      }
    
      /** An implementation of {@link List#addAll(int, Collection)}. */
      static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) {
        boolean changed = false;
        ListIterator<E> listIterator = list.listIterator(index);
        for (E e : elements) {
          listIterator.add(e);
          changed = true;
        }
        return changed;
      }
    
      /** An implementation of {@link List#indexOf(Object)}. */
      static int indexOfImpl(List<?> list, @Nullable Object element) {
        if (list instanceof RandomAccess) {
          return indexOfRandomAccess(list, element);
        } else {
          ListIterator<?> listIterator = list.listIterator();
          while (listIterator.hasNext()) {
            if (Objects.equal(element, listIterator.next())) {
              return listIterator.previousIndex();
            }
          }
          return -1;
        }
      }
    
      private static int indexOfRandomAccess(List<?> list, @Nullable Object element) {
        int size = list.size();
        if (element == null) {
          for (int i = 0; i < size; i++) {
            if (list.get(i) == null) {
              return i;
            }
          }
        } else {
          for (int i = 0; i < size; i++) {
            if (element.equals(list.get(i))) {
              return i;
            }
          }
        }
        return -1;
      }
    
      /** An implementation of {@link List#lastIndexOf(Object)}. */
      static int lastIndexOfImpl(List<?> list, @Nullable Object element) {
        if (list instanceof RandomAccess) {
          return lastIndexOfRandomAccess(list, element);
        } else {
          ListIterator<?> listIterator = list.listIterator(list.size());
          while (listIterator.hasPrevious()) {
            if (Objects.equal(element, listIterator.previous())) {
              return listIterator.nextIndex();
            }
          }
          return -1;
        }
      }
    
      private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) {
        if (element == null) {
          for (int i = list.size() - 1; i >= 0; i--) {
            if (list.get(i) == null) {
              return i;
            }
          }
        } else {
          for (int i = list.size() - 1; i >= 0; i--) {
            if (element.equals(list.get(i))) {
              return i;
            }
          }
        }
        return -1;
      }
    
      /** Returns an implementation of {@link List#listIterator(int)}. */
      static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) {
        return new AbstractListWrapper<>(list).listIterator(index);
      }
    
      /** An implementation of {@link List#subList(int, int)}. */
      static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) {
        List<E> wrapper;
        if (list instanceof RandomAccess) {
          wrapper =
              new RandomAccessListWrapper<E>(list) {
                @Override
                public ListIterator<E> listIterator(int index) {
                  return backingList.listIterator(index);
                }
    
                private static final long serialVersionUID = 0;
              };
        } else {
          wrapper =
              new AbstractListWrapper<E>(list) {
                @Override
                public ListIterator<E> listIterator(int index) {
                  return backingList.listIterator(index);
                }
    
                private static final long serialVersionUID = 0;
              };
        }
        return wrapper.subList(fromIndex, toIndex);
      }
    
      private static class AbstractListWrapper<E> extends AbstractList<E> {
        final List<E> backingList;
    
        AbstractListWrapper(List<E> backingList) {
          this.backingList = checkNotNull(backingList);
        }
    
        @Override
        public void add(int index, E element) {
          backingList.add(index, element);
        }
    
        @Override
        public boolean addAll(int index, Collection<? extends E> c) {
          return backingList.addAll(index, c);
        }
    
        @Override
        public E get(int index) {
          return backingList.get(index);
        }
    
        @Override
        public E remove(int index) {
          return backingList.remove(index);
        }
    
        @Override
        public E set(int index, E element) {
          return backingList.set(index, element);
        }
    
        @Override
        public boolean contains(Object o) {
          return backingList.contains(o);
        }
    
        @Override
        public int size() {
          return backingList.size();
        }
      }
    
      private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E>
          implements RandomAccess {
        RandomAccessListWrapper(List<E> backingList) {
          super(backingList);
        }
      }
    
      /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
      static <T> List<T> cast(Iterable<T> iterable) {
        return (List<T>) iterable;
      }
    }
    

      

  • 相关阅读:
    java.lang.IllegalStateException: RequestParam.value() was empty on parameter 0
    CentOS7 firewalld 使用
    服务器设置主机名以及服务器间ssh连接
    httpclient处理返回数据
    httpclient如何获取请求参数
    httpclient请求转发实战
    Java自带的md5、sha和base64加密怎么用
    mongodb分页Spring-data-mongodb
    has been loaded by xml or sqlprovider
    052(十)
  • 原文地址:https://www.cnblogs.com/lzh1043060917/p/13721108.html
Copyright © 2011-2022 走看看