zoukankan      html  css  js  c++  java
  • 线性回归

    1、本节重点知识点用自己的话总结出来,可以配上图片,以及说明该知识点的重要性

     线性回归自变量和因变量直接的关系

     线性回归预测房价的误差值是表示点到线之间红色的距离

     损失函数

     

    线性回归

    import random
    import matplotlib.pyplot as plt
    xs = [0.1*x for x in range(0,10)]
    ys = [12*i+4 for i in xs]
    print(xs)
    print(ys)
    w = random.random()
    b = random.random()
    a1=[]
    b1=[]
    for i in range(50):
        for x,y in zip(xs,ys):
            o = w*x + b
            e = (o-y)
            loss = e**2
            dw = 2*e*x
            db = 2*e*1
            w = w - 0.1*dw
            b = b - 0.1*db
            print('loss={0}, w={1}, b={2}'.format(loss,w,b))
        a1.append(i)
        b1.append(loss)
        plt.plot(a1,b1)
        plt.pause(0.1)
    plt.show()

     2、思考线性回归算法可以用来做什么?(大家尽量不要写重复)

    (1)房价

    (2)世界人口增长

    (3)高考人数

    (4)高效录取人数

    (5)股价趋势

    (6)物价

    3、自主编写线性回归算法 ,数据可以自己造,或者从网上获取。(加分题)

    from sklearn.linear_model import LinearRegression
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    # 数据
    boston = load_boston()
    X = boston['data']
    y = boston['target']
    names = boston['feature_names']
    # 划分数据
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state=125)
    # 建立模型
    clf = LinearRegression().fit(X_train,y_train)
    ## 预测
    y_pred = clf.predict(X_test)
    print('预测前20个结果:','
    ',y_pred[:20])
    import matplotlib.pyplot as plt
    from matplotlib import rcParams
    rcParams['font.sans-serif'] = 'SimHei'
    fig = plt.figure(figsize=(10,6))
    #画图
    plt.plot(range(y_test.shape[0]),y_test,color="green", linewidth=1.5, linestyle="-")
    plt.plot(range(y_test.shape[0]),y_pred,color="red", linewidth=1.5, linestyle="-.")
    plt.legend(['真实值','预测值'])
    plt.show()
    

  • 相关阅读:
    冲刺第四天
    冲刺第三天
    构建之法阅读笔记03
    冲刺第二天
    第八周学习进度条
    冲刺第一天
    第七周学习进度条
    软件工程课堂练习:返回一个一维整数数组中最大子数组的和
    团队项目成员和题目
    调用TerminateProcess是无法触发DLL_PROCESS_DETACH的
  • 原文地址:https://www.cnblogs.com/lzhdonald/p/12758516.html
Copyright © 2011-2022 走看看