zoukankan      html  css  js  c++  java
  • 手写数字识别-小数据集

    作业补交说明

    第五次作业:https://www.cnblogs.com/lzhdonald/p/12758516.html

    当时已经写完了作业存在草稿,忘记发布了没有提交,第二天发现不能提交了,当时也有和老师说明了情况。

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    #导入手写数字数据集
    from sklearn.datasets import load_digits import numpy as np digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    # 归一化MinMaxScaler()
    from sklearn.preprocessing import MinMaxScaler
    X_data = digits.data.astype(np.float32)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("归一化后",X_data)
    # 转化为图片的格式
    X=X_data.reshape(-1,8,8,1)

    独热编码:

    # 独热编码
    from sklearn.preprocessing import OneHotEncoder
    # y = digits.target.reshape(-1,1)
    #将Y_data变为一列
    y = digits.target.astype(np.float32).reshape(-1,1)  
    Y = OneHotEncoder().fit_transform(y).todense() #张量结构todense
    print("独热编码:",Y)
    # 切分数据集
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
    print(X_train,X_test,y_train,y_test)
    print("X_data.shape:",X_data.shape)
    print("X.shape",X.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
    #3、建立模型
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    # 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # 池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))
    # 防止过拟合,随机丢掉连接
    model.add(Dropout(0.25))
    # 二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # 池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # 四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # 池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 平坦层
    model.add(Flatten())
    # 全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    # 激活函数softmax
    model.add(Dense(10, activation='softmax'))
    print(model.summary())

    4.模型训练

    import matplotlib.pyplot as plt
    # 画图
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    
    # 4、模型训练
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')
    

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    import pandas as pd
    import seaborn as sns
    # model.evaluate()
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    # pandas.crosstab
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    # 交叉矩阵
    # seaborn.heatmap
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    # 转换成属dataframe
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
    plt.show()
    

  • 相关阅读:
    绪论
    Linux回到上次目录
    松下伺服电机控制器参数设置
    更新github上的文件
    pytorch
    从本地上传文件到github
    Linux常用命令
    使用colab训练神经网络
    深度学习模型训练过程
    anaconda安装ubuntu20.4中
  • 原文地址:https://www.cnblogs.com/lzhdonald/p/13072720.html
Copyright © 2011-2022 走看看