zoukankan      html  css  js  c++  java
  • UVa 10392 Factoring Large Numbers

    Problem F: Factoring Large Numbers

    One of the central ideas behind much cryptography is that factoring large numbers is computationally intensive. In this context one might use a 100 digit number that was a product of two 50 digit prime numbers. Even with the fastest projected computers this factorization will take hundreds of years.

    You don't have those computers available, but if you are clever you can still factor fairly large numbers.

    Input

    The input will be a sequence of integer values, one per line, terminated by a negative number. The numbers will fit in gcc's long long int datatype. You may assume that there will be at most one factor more than 1000000.

    Output

    Each positive number from the input must be factored and all factors (other than 1) printed out. The factors must be printed in ascending order with 4 leading spaces preceding a left justified number, and followed by a single blank line.

    Sample Input

    90
    1234567891
    18991325453139
    12745267386521023
    -1
    

    Sample Output

        2
        3
        3
        5
    
        1234567891
    
        3
        3
        13
        179
        271
        1381
        2423
    
        30971
        411522630413

    给一个不超过long long int范围的数求它的因数分解,数据保证大于1000000的因子只有一个

    先求出1~1000000之间的所有素数,将输入的数从小到大分别除这些素数,如果能整除就将这个素数输出,并再接着除这个素数。全部除过之后如果还没除到1,那么剩下的这个结果就是那个大于1000000的素因子。

    注意输出前要有4个空格,因为这个PE一次……

     1 #include<iostream>
     2 #include<cstdio>
     3 
     4 using namespace std;
     5 
     6 int prime[80000];
     7 bool isprime[1000050];
     8 
     9 int initial()
    10 {
    11     for(int i=0;i<=1000000;i++)
    12         isprime[i]=true;
    13     isprime[0]=isprime[1]=false;
    14     for(int i=4;i<=1000000;i+=2)
    15         isprime[i]=false;
    16     for(int i=3;i<=1000;i++)
    17         if(isprime[i])
    18             for(int j=i*2;j<=1000000;j+=i)
    19                 isprime[j]=false;
    20 
    21     int t=0;
    22     for(int i=2;i<=1000000;i++)
    23         if(isprime[i])
    24             prime[t++]=i;
    25 
    26     return t;
    27 }
    28 
    29 int main()
    30 {
    31     int t=initial();
    32 
    33     long long x;
    34 
    35     while( cin>>x && x>=0 )
    36     {
    37         for(int i=0;i<t;i++)
    38         {
    39             while(x%prime[i]==0)
    40             {
    41                 printf("    %d
    ",prime[i]);
    42                 x/=prime[i];
    43             }
    44             if(x==1)
    45                 break;
    46         }
    47 
    48         if(x>1)
    49             cout<<"    "<<x<<endl<<endl;
    50         else
    51             printf("
    ");
    52     }
    53 
    54     return 0;
    55 }
    [C++]
  • 相关阅读:
    Java实现 LeetCode 167 两数之和 II
    Java实现 LeetCode 1227 飞机座位分配概率
    Java实现 LeetCode 1227 飞机座位分配概率
    Java实现 LeetCode 1227 飞机座位分配概率
    Java实现 LeetCode 166 分数到小数
    QueryPerformanceFrequency 和 QueryPerformanceCounter用法
    VC中利用多线程技术实现线程之间的通信
    C++著名类库和C++标准库介绍
    CRectTracker类的使用--橡皮筋窗口
    备份3个判断指针是否有效的函数,以备不时之需
  • 原文地址:https://www.cnblogs.com/lzj-0218/p/3536721.html
Copyright © 2011-2022 走看看