zoukankan      html  css  js  c++  java
  • UVa 543 Godbach's Conjecture

      Goldbach's Conjecture 

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:

    Every number greater than 2 can be written as the sum of three prime numbers.

    Goldbach cwas considering 1 as a primer number, a convention that is no longer followed. Later on, Euler re-expressed the conjecture as:

    Every even number greater than or equal to 4 can be expressed as the sum of two prime numbers.


    For example:

    • 8 = 3 + 5. Both 3 and 5 are odd prime numbers.
    • 20 = 3 + 17 = 7 + 13.
    • 42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)


    Anyway, your task is now to verify Goldbach's conjecture as expressed by Euler for all even numbers less than a million.

    Input 

    The input file will contain one or more test cases.

    Each test case consists of one even integer n with $6 le n < 1000000$.

    Input will be terminated by a value of 0 for n.

    Output 

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized.

    If there is no such pair, print a line saying ``Goldbach's conjecture is wrong."

    Sample Input 

    8
    20
    42
    0
    

    Sample Output 

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
    

    Miguel A. Revilla 
    1999-01-11

    验证哥德巴赫猜想,给一个大于等于4的偶数,将它分解成两个素数之和。

    先求出0~1000000之间的所有素数,然后从小到大试验即可。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 
     5 using namespace std;
     6 
     7 bool isPrime[1000050];
     8 int prime[80000];
     9 
    10 int initial()
    11 {
    12     for(int i=1;i<=1000000;i++)
    13         isPrime[i]=true;
    14     isPrime[0]=isPrime[1]=false;
    15 
    16     for(int i=4;i<=1000000;i+=2)
    17         isPrime[i]=false;
    18     for(int i=3;i<=1000;i+=2)
    19         if(isPrime[i])
    20             for(int j=i*2;j<=1000000;j+=i)
    21                 isPrime[j]=false;
    22 
    23     int t=0;
    24     for(int i=1;i<=1000000;i++)
    25         if(isPrime[i])
    26             prime[t++]=i;
    27 
    28     return t;
    29 }
    30 
    31 int main()
    32 {
    33     int t=initial();
    34 
    35     int n;
    36 
    37     while(scanf("%d",&n)==1&&n)
    38     {
    39         int a=-1;
    40         for(int i=0;i<t;i++)
    41         {
    42             if(isPrime[n-prime[i]])
    43             {
    44                 a=prime[i];
    45                 break;
    46             }
    47         }
    48         if(a!=-1)
    49             printf("%d = %d + %d
    ",n,a,n-a);
    50         else
    51             puts("Goldbach's conjecture is wrong.");
    52     }
    53 
    54     return 0;
    55 }
    [C++]
  • 相关阅读:
    20165214 第八周学习任务
    20165214 实验二 Java面向对象程序设计
    20165214 结队编程项目-四则运算
    20165214 第七周学习任务
    20165214 第六周学习任务
    20165214 实验一 Java开发环境的熟悉
    20165313 《Java程序设计》第八周学习总结
    结对编程-四则运算
    2017-2018-2 20165313实验二《Java面向对象程序设计》
    20165313 《Java程序设计》第七周学习总结
  • 原文地址:https://www.cnblogs.com/lzj-0218/p/3565852.html
Copyright © 2011-2022 走看看