zoukankan      html  css  js  c++  java
  • POJ 2388 Who's in the Middle

    Who's in the Middle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 27445   Accepted: 15856

    Description

    FJ is surveying his herd to find the most average cow. He wants to know how much milk this 'median' cow gives: half of the cows give as much or more than the median; half give as much or less. 

    Given an odd number of cows N (1 <= N < 10,000) and their milk output (1..1,000,000), find the median amount of milk given such that at least half the cows give the same amount of milk or more and at least half give the same or less.

    Input

    * Line 1: A single integer N 

    * Lines 2..N+1: Each line contains a single integer that is the milk output of one cow.

    Output

    * Line 1: A single integer that is the median milk output.

    Sample Input

    5
    2
    4
    1
    3
    5

    Sample Output

    3
    题目大意:求一组数的中位数。
    #include <stdio.h>
    #include <iostream>
    using namespace std;
    
    int Findmid(int arr[], int left, int right, int x)
    {
        if (left >= right)
        {
            return arr[left + x];
        }
        int i = left;
        int j = right;
        int mid = arr[left];
        while(i < j)
        {
            while(i < j && arr[j] >= mid)
            {
                j--;
            }
            arr[i] = arr[j];
            while(i < j && arr[i] <= mid)
            {
                i++;
            }
            arr[j] = arr[i];
        }
        arr[j] = mid;
        if (i - left == x)
        {
            return arr[i];
        }
        else
        {
            if (i - left > x)
            {
                return Findmid(arr, left, i - 1, x);
            }
            else
            {
                return Findmid(arr, i + 1, right, x - (i - left + 1));
            }
        }
    }
    
    int main()
    {
        int arr[10005];
        int n;
        scanf("%d", &n);
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &arr[i]);
        }
        printf("%d
    ", Findmid(arr, 0, n - 1, n / 2));
        return 0;
    }
  • 相关阅读:
    点分治
    主席树
    可持久化并查集
    可持久化线段树
    网络流
    AC自动机
    线性基
    快速幂
    素数筛
    扩展欧几里得算法
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3191962.html
Copyright © 2011-2022 走看看