zoukankan      html  css  js  c++  java
  • 图像轮廓最大内接矩形的求法

    平时工作中图像处理经常会用到图像最大轮廓及最小外接矩形的获取:

    计算过程如下:

    img = cv2.imread(path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    blurred = cv2.blur(gray, (9, 9))
    _, thresh = cv2.threshold(blurred, 155, 255, cv2.THRESH_BINARY)
    _, cnts, _ = cv2.findContours( thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
    rect = cv2.minAreaRect(c)
    #box即为最小外接矩形坐标
    box = np.int0(cv2.boxPoints(rect))
    cv2.drawContours(img, [box], -1, (0, 255, 0), 3)
    cv2.imshow("Image", img)
    cv2.imwrite("pic.jpg", img)
    cv2.waitKey(0)
    

    然而有时候我们需要的是最大内接矩形:

    从轮廓中所有坐标中获取其中4个坐标即可

    获取过程如下:

    def order_points(pts):
        # pts为轮廓坐标
        # 列表中存储元素分别为左上角,右上角,右下角和左下角
        rect = np.zeros((4, 2), dtype = "float32")
        # 左上角的点具有最小的和,而右下角的点具有最大的和
        s = pts.sum(axis = 1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        # 计算点之间的差值
        # 右上角的点具有最小的差值,
        # 左下角的点具有最大的差值
        diff = np.diff(pts, axis = 1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        # 返回排序坐标(依次为左上右上右下左下)
        return rect
    

     

    img = cv2.imread(path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    blurred = cv2.blur(gray, (9, 9))
    _, thresh = cv2.threshold(blurred, 155, 255, cv2.THRESH_BINARY)
    _, cnts, _ = cv2.findContours( thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
    先找出轮廓点
    rect = order_points(c.reshape(c.shape[0], 2))
    print(rect)
    xs = [i[0] for i in rect]
    ys = [i[1] for i in rect]
    xs.sort()
    ys.sort()
    #内接矩形的坐标为
    print(xs[1],xs[2],ys[1],ys[2])
    

      

  • 相关阅读:
    20210519日报
    20210518日报
    20210517日报
    20210514日报
    20210513日报
    20210512日报
    20210511日报
    数据挖掘提分三板斧-转
    特征变量和y值的可视化
    kaggle 2015年航班延误
  • 原文地址:https://www.cnblogs.com/lzq116/p/11866642.html
Copyright © 2011-2022 走看看