zoukankan      html  css  js  c++  java
  • Alamofire源码解读系列(七)之网络监控(NetworkReachabilityManager)

    Alamofire源码解读系列(七)之网络监控(NetworkReachabilityManager)

    本篇主要讲解iOS开发中的网络监控

    前言

    在开发中,有时候我们需要获取这些信息:

    • 手机是否联网
    • 当前网络是WiFi还是蜂窝

    那么我总结一下具体的使用场景有哪些?肯定有遗漏:

    1. 聊天列表,需要实时监控当前的网络是不是可达的,如果不可达,则出现不能联网的提示
    2. 在线视屏播放,需要判断当前的网络状态,如果不是WiFi,应该给出流量播放的提示
    3. 对于比较重要的网络请求,在请求出错的情况下,判断网路状态,找出请求失败原因。
    4. 可以把请求进行缓存后,当监听到网络连接成功后发送。举个例子,每次进app都要把位置信息发给服务器,如果发送失败后,发现是网络不可达造成的失败,那么可以把这个请求放入到一个队列中,在网络可达的时候,开启队列任务。
    5. 当网络状态变化时,实时的给用户提示信息
    6. 获取某个节点或地址是不是可达的

    但是,极其不建议在发请求前,先检测当前的网络是不是可达。因为手机的网络状态是经常变化的》

    SCNetworkReachabilityFlags

    SCNetworkReachabilityFlags是获取网络状态最核心的东西。我们来看看它有哪些内容:

    作用

    SCNetworkReachabilityFlags能够判断某个指定的网络节点名称或者地址是不是可达的,也能判断该节点或地址是不是需要先建立连接,也可以判断是不是需要用户手动去建立连接。

    注意:这里所说的连接分为用编程手段连接和用手动建立连接两种

    我们只列举出跟本类相关的一些选项:

    • kSCNetworkReachabilityFlagsReachable 表明当前指定的节点或地址是可达的。注意:可达不是代表节点或地址接受到了数据,而是代表数据能够离开本地,因此。就算是可达的,也不一定能够发送成功
    • kSCNetworkReachabilityFlagsConnectionRequired 表明要想和指定的节点或地址通信,需要先建立连接。比如说拨号上网。注意:对于手机来说,如果没有返回该标记,就说明手机正在使用蜂窝网路或者WiFi
    • kSCNetworkReachabilityFlagsConnectionOnTraffic 表明要想和指定的节点或地址通信,必须先建立连接,但是在当前的网络配置下,目标是可达的。注意:任何连接到指定的节点或地址的请求都会触发该标记,举个例子,在很多地方需要输入手机,获取验证码后才能联网,就是这个原理
    • kSCNetworkReachabilityFlagsConnectionOnDemand 表明要想和指定的节点或地址通信,必须先建立连接,但是在当前的网络配置下,目标是可达的。但是建立连接必须通过CFSocketStream APIs才行,其他的APIs不能建立连接
    • kSCNetworkReachabilityFlagsInterventionRequired 表明要想和指定的节点或地址通信,必须先建立连接,但是在当前的网络配置下,目标是可达的。需要用户手动提供一些数据,比如密码或者token
    • kSCNetworkReachabilityFlagsIsWWAN 表明是不是通过蜂窝网络连接

    上边的这些选项,会在下边的一个核心方法中使用到,我们在下边的代码中在给出说明。

    ConnectionType

    /// Defines the various connection types detected by reachability flags.
        ///
        /// - ethernetOrWiFi: The connection type is either over Ethernet or WiFi.
        /// - wwan:           The connection type is a WWAN connection.
        public enum ConnectionType {
            case ethernetOrWiFi
            case wwan
        }
    

    对于手机而言,我们需要的连接类型就两种,一种是蜂窝网络,另一种是WiFi网络。因此在设计NetworkReachabilityManager的时候,通过上边的枚举获取当前的网络连接类型。

    NetworkReachabilityStatus

     /// Defines the various states of network reachability.
        ///
        /// - unknown:      It is unknown whether the network is reachable.
        /// - notReachable: The network is not reachable.
        /// - reachable:    The network is reachable.
        public enum NetworkReachabilityStatus {
            case unknown
            case notReachable
            case reachable(ConnectionType)
        }
    

    网络状态明显要比网络类型范围更大,因此又增加了两个选项,一个表示当前的网络是未知的,另一个表示当前的网路不可达。

    综上所述,我们的目的就是拿到这个NetworkReachabilityStatus,那么NetworkReachabilityManager是如何把NetworkReachabilityStatus传递出来的呢? 答案就是闭包,

    /// A closure executed when the network reachability status changes. The closure takes a single argument: the
        /// network reachability status.
        public typealias Listener = (NetworkReachabilityStatus) -> Void
    

    swift的闭包,我们已经很熟悉了,在开发中,首先初始化NetworkReachabilityManager,然后设置Listener,第三部开启监控,这个开启监控的方法会在下边讲到。

    Properties

    在NetworkReachabilityManager中,属性分为public和private,我们先看public部分:

    /// Whether the network is currently reachable.
        public var isReachable: Bool { return isReachableOnWWAN || isReachableOnEthernetOrWiFi }
    
        /// Whether the network is currently reachable over the WWAN interface.
        public var isReachableOnWWAN: Bool { return networkReachabilityStatus == .reachable(.wwan) }
    
        /// Whether the network is currently reachable over Ethernet or WiFi interface.
        public var isReachableOnEthernetOrWiFi: Bool { return networkReachabilityStatus == .reachable(.ethernetOrWiFi) }
    
        /// The current network reachability status.
        public var networkReachabilityStatus: NetworkReachabilityStatus {
            guard let flags = self.flags else { return .unknown }
            return networkReachabilityStatusForFlags(flags)
        }
    
        /// The dispatch queue to execute the `listener` closure on.
        public var listenerQueue: DispatchQueue = DispatchQueue.main
    
        /// A closure executed when the network reachability status changes.
        public var listener: Listener?
    

    public表明我们可以通过NetworkReachabilityManager实例直接获得的属性,能够让我们很方便的获取我们想要的数据。我们对这些属性做一些简单的说明:

    • isReachable: Bool 当前网络是可达的,要么是蜂窝网络,要么是WiFi连接
    • isReachableOnWWAN: Bool 表明当前网络是通过蜂窝网络连接
    • isReachableOnEthernetOrWiFi: Bool 表明当前网络是通过WiFi连接
    • networkReachabilityStatus: NetworkReachabilityStatus 返回当前的网络状态,这也是上边3个判断的基础
    • listenerQueue 监听listener在那个队列中调用,默认的是主队列
    • listener: Listener 监听闭包,当网络状态发生变化时会调用

    上边这些public属性有的是只读的,有的不是,我们在看看private属性:

    • flags: SCNetworkReachabilityFlags? 主要目的是获取flags,在上边我们介绍过,网络状态就是根据flags判断出来的是通过下边的方法获取到的:

        @available(iOS 2.0, *)
        public func SCNetworkReachabilityGetFlags(_ target: SCNetworkReachability, _ flags: UnsafeMutablePointer<SCNetworkReachabilityFlags>) -> Bool
      
    • reachability: SCNetworkReachability 必不可少的对象,有了它才能获取flags

    • previousFlags: SCNetworkReachabilityFlags 用于记录当前的flags,在收到系统的callBack方法后,通过比较现在的flags和previousFlags来判断是不是要调用listener函数

    Initialization

    关于初始化,NetworkReachabilityManager提供了三种选择:

    通过指定host

      /// Creates a `NetworkReachabilityManager` instance with the specified host.
        ///
        /// - parameter host: The host used to evaluate network reachability.
        ///
        /// - returns: The new `NetworkReachabilityManager` instance.
        public convenience init?(host: String) {
            guard let reachability = SCNetworkReachabilityCreateWithName(nil, host) else { return nil }
            self.init(reachability: reachability)
        }
    

    通过init方法会默认的设置为指向0.0.0.0

     /// Creates a `NetworkReachabilityManager` instance that monitors the address 0.0.0.0.
        ///
        /// Reachability treats the 0.0.0.0 address as a special token that causes it to monitor the general routing
        /// status of the device, both IPv4 and IPv6.
        ///
        /// - returns: The new `NetworkReachabilityManager` instance.
        public convenience init?() {
            var address = sockaddr_in()
            address.sin_len = UInt8(MemoryLayout<sockaddr_in>.size)
            address.sin_family = sa_family_t(AF_INET)
    
            guard let reachability = withUnsafePointer(to: &address, { pointer in
                return pointer.withMemoryRebound(to: sockaddr.self, capacity: MemoryLayout<sockaddr>.size) {
                    return SCNetworkReachabilityCreateWithAddress(nil, $0)
                }
            }) else { return nil }
    
            self.init(reachability: reachability)
        }
    

    通过指定SCNetworkReachability

    private init(reachability: SCNetworkReachability) {
            self.reachability = reachability
            self.previousFlags = SCNetworkReachabilityFlags()
        }
    

    deinit

     deinit {
            stopListening()
        }
    

    上边的代码表明,在NetworkReachabilityManager被销毁的时候,会停止监控,因此在开发中就要额外注意这一点,最好让控制器强引用它。

    startListening

    在开发中,对于开发某个功能,我有时候会称为开发某种能力类,我们可以采取自上而下的方法,我先定义出最基本的伪代码,对于网络监控我们的伪代码就应该是下边这样的:

    1. 创建一个监控者
    2. 设置监控回调事件
    3. 开始监控
    4. 停止监控

    在这里讲点额外的编程技巧,上边的4个伪代码我们可以成为子程序,每个子程序都应该有一定的内聚性要求,就是说每个子程序最好能够实现一个单一的功能。子程序会出现成对出现的情况,比如开始和停止,等等。那么我们现在要讲的就是第三步,开始监控。

        @discardableResult
        public func startListening() -> Bool {
            var context = SCNetworkReachabilityContext(version: 0, info: nil, retain: nil, release: nil, copyDescription: nil)
            context.info = Unmanaged.passUnretained(self).toOpaque()
    
            let callbackEnabled = SCNetworkReachabilitySetCallback(
                reachability,
                { (_, flags, info) in
                    let reachability = Unmanaged<NetworkReachabilityManager>.fromOpaque(info!).takeUnretainedValue()
                    reachability.notifyListener(flags)
                },
                &context
            )
    
            let queueEnabled = SCNetworkReachabilitySetDispatchQueue(reachability, listenerQueue)
    
            listenerQueue.async {
                self.previousFlags = SCNetworkReachabilityFlags()
                self.notifyListener(self.flags ?? SCNetworkReachabilityFlags())
            }
    
            return callbackEnabled && queueEnabled
        }
    

    @discardableResult表明可以忽略返回值。其实开始监控网络状态就分为两部:

    1. 设置Callback回调函数
    2. 设置Callback回调队列

    当然必要的前提是必须初始化了一个reachability。

    这里有一些很有意思的东西,可能我们在swift中是不常见的。比如:Unmanaged.passUnretained(self).toOpaque(),比如:let reachability = Unmanaged<NetworkReachabilityManager>.fromOpaque(info!).takeUnretainedValue()

    /// A type for propagating an unmanaged object reference.
    ///
    /// When you use this type, you become partially responsible for
    /// keeping the object alive.
    public struct Unmanaged<Instance : AnyObject> {
    
        /// Unsafely turns an opaque C pointer into an unmanaged class reference.
        ///
        /// This operation does not change reference counts.
        ///
        ///     let str: CFString = Unmanaged.fromOpaque(ptr).takeUnretainedValue()
        ///
        /// - Parameter value: An opaque C pointer.
        /// - Returns: An unmanaged class reference to `value`.
        public static func fromOpaque(_ value: UnsafeRawPointer) -> Unmanaged<Instance>
    
        /// Unsafely converts an unmanaged class reference to a pointer.
        ///
        /// This operation does not change reference counts.
        ///
        ///     let str0: CFString = "boxcar"
        ///     let bits = Unmanaged.passUnretained(str0)
        ///     let ptr = bits.toOpaque()
        ///
        /// - Returns: An opaque pointer to the value of this unmanaged reference.
        public func toOpaque() -> UnsafeMutableRawPointer
    
        /// Creates an unmanaged reference with an unbalanced retain.
        ///
        /// The instance passed as `value` will leak if nothing eventually balances
        /// the retain.
        ///
        /// This is useful when passing an object to an API which Swift does not know
        /// the ownership rules for, but you know that the API expects you to pass
        /// the object at +1.
        ///
        /// - Parameter value: A class instance.
        /// - Returns: An unmanaged reference to the object passed as `value`.
        public static func passRetained(_ value: Instance) -> Unmanaged<Instance>
    
        /// Creates an unmanaged reference without performing an unbalanced
        /// retain.
        ///
        /// This is useful when passing a reference to an API which Swift
        /// does not know the ownership rules for, but you know that the
        /// API expects you to pass the object at +0.
        ///
        ///     CFArraySetValueAtIndex(.passUnretained(array), i,
        ///                            .passUnretained(object))
        ///
        /// - Parameter value: A class instance.
        /// - Returns: An unmanaged reference to the object passed as `value`.
        public static func passUnretained(_ value: Instance) -> Unmanaged<Instance>
    
        /// Gets the value of this unmanaged reference as a managed
        /// reference without consuming an unbalanced retain of it.
        ///
        /// This is useful when a function returns an unmanaged reference
        /// and you know that you're not responsible for releasing the result.
        ///
        /// - Returns: The object referenced by this `Unmanaged` instance.
        public func takeUnretainedValue() -> Instance
    
        /// Gets the value of this unmanaged reference as a managed
        /// reference and consumes an unbalanced retain of it.
        ///
        /// This is useful when a function returns an unmanaged reference
        /// and you know that you're responsible for releasing the result.
        ///
        /// - Returns: The object referenced by this `Unmanaged` instance.
        public func takeRetainedValue() -> Instance
    
        /// Performs an unbalanced retain of the object.
        public func retain() -> Unmanaged<Instance>
    
        /// Performs an unbalanced release of the object.
        public func release()
    
        /// Performs an unbalanced autorelease of the object.
        public func autorelease() -> Unmanaged<Instance>
    }
    

    这里提供一个文章地址[HandyJSON] 设计思路简析,关于swift中指针的使用可以参考这篇文章。很强大啊。后续我会写HandyJson的源码解读文章。

    在上边的开始监控中有一个函数:notifyListener,这个函数的目的就是通知监听者,也就是触发回调函数。

     func notifyListener(_ flags: SCNetworkReachabilityFlags) {
            guard previousFlags != flags else { return }
            previousFlags = flags
    
            listener?(networkReachabilityStatusForFlags(flags))
        }
    

    networkReachabilityStatusForFlags

    这个函数是根据flags获取状态的核心函数,但是我觉得没什么好说的,在开发中用的也不多,我们把代码粘一下,然后重点来说说swift中运算符==重载:

     func networkReachabilityStatusForFlags(_ flags: SCNetworkReachabilityFlags) -> NetworkReachabilityStatus {
            /// 这里的contains函数要传递的值是OptionSet自身,因此.reachable换成SCNetworkReachabilityFlags.reachable也是可以的,reachable是一个静态方法
            /// flags.contains(.reachable)如果是true,就代表有网络连接
            guard flags.contains(.reachable) else { return .notReachable }
    
            var networkStatus: NetworkReachabilityStatus = .notReachable
    
            if !flags.contains(.connectionRequired) { networkStatus = .reachable(.ethernetOrWiFi) }
    
            if flags.contains(.connectionOnDemand) || flags.contains(.connectionOnTraffic) {
                if !flags.contains(.interventionRequired) { networkStatus = .reachable(.ethernetOrWiFi) }
            }
    
            #if os(iOS)
                if flags.contains(.isWWAN) { networkStatus = .reachable(.wwan) }
            #endif
    
            return networkStatus
        }
    

    运算符重载

    要想重载==,需要实现Equatable协议:

    public protocol Equatable {
    
        /// Returns a Boolean value indicating whether two values are equal.
        ///
        /// Equality is the inverse of inequality. For any values `a` and `b`,
        /// `a == b` implies that `a != b` is `false`.
        ///
        /// - Parameters:
        ///   - lhs: A value to compare.
        ///   - rhs: Another value to compare.
        public static func ==(lhs: Self, rhs: Self) -> Bool
    }
    

    其实,这种思想还是很重要的,在开发中可以通过这种方式来判断两个模型是不是相同,等等很多种使用场景。我简单的把Apple文档中的注释说明部分翻译一下。

    ==!=是对立统一的关系,我们自定义了==,同理,!=也就支持了。在swift中,很多基本的数据类型都支持了Equatable协议。

    Equatable协议的一个典型的应用场景就是判断一个集合中是否包含某个值。在swift中,如果集合中的值都实现了Equatable协议,那么就可以通过contains(_:)方法来判断是不是包含该值。这也说明了contains(_:)内部实现应该是通过==来实现的。使用contains(_:)方法的好处就是省去了我们遍历数据,然后再进行判断的繁琐步骤。我们看个例子:

    ///     let students = ["Nora", "Fern", "Ryan", "Rainer"]
    ///
    ///     let nameToCheck = "Ryan"
    ///     if students.contains(nameToCheck) {
    ///         print("(nameToCheck) is signed up!")
    ///     } else {
    ///         print("No record of (nameToCheck).")
    ///     }
    ///     // Prints "Ryan is signed up!"
    

    需要把==声明成为自定义类型的静态方法

    假如说我们有一个街道地址的结构体:

         ///     struct StreetAddress {
            ///         let number: String
            ///         let street: String
            ///         let unit: String?
            ///
            ///         init(_ number: String, _ street: String, unit: String? = nil) {
            ///             self.number = number
            ///             self.street = street
            ///             self.unit = unit
            ///         }
            ///     }
    

    我们让StreetAddress实现Equatable协议:

    ///
    ///     extension StreetAddress: Equatable {
    ///         static func == (lhs: StreetAddress, rhs: StreetAddress) -> Bool {
    ///             return
    ///                 lhs.number == rhs.number &&
    ///                 lhs.street == rhs.street &&
    ///                 lhs.unit == rhs.unit
    ///         }
    ///     }
    ///
    

    接下来我们就能使用系统的contains(_:)方法来判断一个集合中是不是包含摸个街道地址了。

    ///
    ///     let addresses = [StreetAddress("1490", "Grove Street"),
    ///                      StreetAddress("2119", "Maple Avenue"),
    ///                      StreetAddress("1400", "16th Street")]
    ///     let home = StreetAddress("1400", "16th Street")
    ///
    ///     print(addresses[0] == home)
    ///     // Prints "false"
    ///     print(addresses.contains(home))
    ///     // Prints "true"
    ///
    

    有了上边的知识,我们在看看NetworkReachabilityManager是怎么用的:

    
    extension NetworkReachabilityManager.NetworkReachabilityStatus: Equatable {}
    
    /// Returns whether the two network reachability status values are equal.
    ///
    /// - parameter lhs: The left-hand side value to compare.
    /// - parameter rhs: The right-hand side value to compare.
    ///
    /// - returns: `true` if the two values are equal, `false` otherwise.
    public func ==(
        lhs: NetworkReachabilityManager.NetworkReachabilityStatus,
        rhs: NetworkReachabilityManager.NetworkReachabilityStatus)
        -> Bool
    {
        switch (lhs, rhs) {
        case (.unknown, .unknown):
            return true
        case (.notReachable, .notReachable):
            return true
        case let (.reachable(lhsConnectionType), .reachable(rhsConnectionType)):
            return lhsConnectionType == rhsConnectionType
        default:
            return false
        }
    }
    

    在swift中,static函数还可以像上边这么用,把函数写到类的代码块之外,当然,上边的代码也可以这么写:

    extension NetworkReachabilityManager.NetworkReachabilityStatus: Equatable {
        
        public static func ==(
            lhs: NetworkReachabilityManager.NetworkReachabilityStatus,
            rhs: NetworkReachabilityManager.NetworkReachabilityStatus)
            -> Bool
        {
            switch (lhs, rhs) {
            case (.unknown, .unknown):
                return true
            case (.notReachable, .notReachable):
                return true
            case let (.reachable(lhsConnectionType), .reachable(rhsConnectionType)):
                return lhsConnectionType == rhsConnectionType
            default:
                return false
            }
        }
    }
    

    总结

    由于知识水平有限,如有错误,还望指出

    链接

    Alamofire源码解读系列(一)之概述和使用 简书-----博客园

    Alamofire源码解读系列(二)之错误处理(AFError) 简书-----博客园

    Alamofire源码解读系列(三)之通知处理(Notification) 简书-----博客园

    Alamofire源码解读系列(四)之参数编码(ParameterEncoding) 简书-----博客园

    Alamofire源码解读系列(五)之结果封装(Result) 简书-----博客园

    Alamofire源码解读系列(六)之Task代理(TaskDelegate) 简书-----博客园

  • 相关阅读:
    福大软工 · 第八次作业(课堂实战)- 项目UML设计(团队)
    福大软工1816 · 第六次作业
    2018软工实践——团队答辩
    福大软工1816 · 第五次作业
    福大软工1816 · 第二次作业
    福大软工1816 · 第一次作业
    个人作业——软件产品案例分析
    第二次结对编程作业--毕设导师智能匹配
    结对项目之需求分析与原型设计
    调研《构建之法》指导下的全国高校的历届软工实践作品、全国互联网+竞赛、物联网竞赛等各类全国性大学生信息化相关的竞赛平台的历届作品
  • 原文地址:https://www.cnblogs.com/machao/p/6593495.html
Copyright © 2011-2022 走看看