zoukankan      html  css  js  c++  java
  • PMVS论文随笔(1)

    博客园排版系统真的比较挫,可以访问我的github.io阅读

    关于Unit的概念

    在pmvs的源代码中,有一个函数是getUnit ,其函数如下(在PMVS2的windows版本代码,optim.cc文件,1184行):

    float Coptim::getUnit(const int index, const Vec4f& coord) const {
      const float fz = norm(coord - m_fm.m_pss.m_photos[index].m_center);
      const float ftmp = m_ipscales[index];
      if (ftmp == 0.0)
        return 1.0;
    
      return 2.0 * fz * (0x0001 << m_fm.m_level) / ftmp;
    }
    

    其中index是图像编号,coord是三维射影空间下的坐标。

    这个函数在pmvs代码中几乎所有的和空间几何计算相关的函数中均被调用,最开始看代码时我并没有特别注意,但是随着代码阅读的深入,发现如果不将该函数读懂,就完全无法理解pmvs中所有的几何计算函数究竟是在做什么,于是今天花时间特意钻研了下,把该函数的含义表达清楚。

    先说结论:该函数是计算将图片上的一个像素反投影到空间的一个指定的面片(patch)上得到的正方形的大小(以世界坐标系中的距离为量度),这个面片满足如下条件——面片的中心位于coord, 面片的法线与相片的法线平行但方向相反(也就是论文中初始化patch时的法线计算方法)。

    这个结论看起来非常复杂,简单说就是如果我在空间的某个坐标处想要画一个正方形,使得该正方形投影到对应的与该正方形平行的相片上的大小恰好是1×1像素大小,那么这个正方形的边长在世界坐标系中的表达究竟是多少。这个函数就是来求解这个边长的。

    这样的话这个函数作用其实就相当大了,他直接沟通了像素坐标和空间坐标的比例关系,可以粗略的比较相片对于场景的缩放,简化很多投影和反投影计算。而这个函数用到的计算方法其实也非常简单。就是简单的相似三角形关系,具体解释如下

    小孔成像相机的几何关系如下图所示(摘自《 Multiple View Geometry in Computer Vision 》)

    小孔成像相机的几何关系

    从该成像原理上我们可以看出,空间中一个长度为(D) 的物体投影到图像上长度(l)满足如下关系:

    [frac{D}{l} = frac{Z_0}{f} ]

    其中(f) 为焦距,(Z_0) 为物体到摄影中心的距离。
    由上式可以得到:

    [D = frac{l}{f}Z_0 ]

    这样我们已知(l) 为1个像素长度,(Z_0) 可以直接由coord到相片的摄影中心直接计算得到。那么只要我们知道以像素为单位的(f)的数值,就可以直接得到(D)。幸运的是,根据一般CCD相机内参数矩阵中各变量的定义:

    [K=egin{bmatrix} a_x & s & x_0 \ 0 & a_y & y_0 \ 0 & 0 & 1 end{bmatrix} ]

    其中(a_x)(a_y)分别是相机在x和y方向上的焦距,且以像素为量纲。另外一般情况下,CCD相机在x和y方向上的比例因此近似相等,即(a_x approx a_y),这样我们可以用下式来近似计算(f)

    [f = frac{a_x + a_y}{2} ]

    综上可得:

    [D=frac{2}{a_x + a_y} Z_0 ]

    这就是pmvs中getUnit的计算方法, 特别解释下,代码中m_ipscales[index]就是提前计算好的(a_x+a_y)的数值,而(0x0001 << m_fm.m_level)则是一个比例因子,可以让程序将图像缩放到一半或者四分之一大小进行计算。

  • 相关阅读:
    python-44-初识队列
    python-43-进程锁/信号量/事件
    python-42-Process多进程
    python-41-初识hmac与socketserver模块
    python-40-初识socket与struct
    python-39-hashlib与logging模块
    python-38-用于面向对象的内置函数
    python-37-各种反射
    python-36-封装与面向对象函数
    python-35-多态与初识封装
  • 原文地址:https://www.cnblogs.com/madhenry/p/7874029.html
Copyright © 2011-2022 走看看