zoukankan      html  css  js  c++  java
  • python学习

    import numpy as np
    x = np.array([1,2,3])
    y = np.arange(10)
    print x  #print x
    print y #res:[0 1 2 3 4 5 6 7 8 9]
    
    a = np.linspace(0,3,5)
    print a   #res:[ 0.    0.75  1.5   2.25  3.  ]
    
    print x**2  #[1 4 9]
    
    a = np.linspace(-np.pi,np.pi,100)
    b = np.sin(a)
    c = np.cos(a)
    
    
    
    from numpy.random import rand
    
    d = rand(3,3)
    print d
    

      

    •  numpy

    numpy:是python的一个扩展函数库,提供高维数组和矩阵运算。

    NumPy参考CPython(一个使用字节码解释器),而在这个Python实现解释器上所写的数学算法代码通常远比编译过的相同代码要来得慢。为了解决这个难题,NumPy引入了多维数组以及可以直接有效率地操作多维数组的函数与运算符。因此在NumPy上只要能被表示为针对数组或矩阵运算的算法,其运行效率几乎都可以与编译过的等效C语言代码一样快。[1]

    NumPy提供了与MATLAB相似的功能与操作方式,因为两者皆为直译语言,并且都可以让用户在针对数组或矩阵运算时提供较标量运算更快的性能。两者相较之下,MATLAB提供了大量的扩充工具箱(例如Simulink);而NumPy则是根基于Python这个更现代、完整并且开放源代码的编程语言之上。此外NumPy也可以结合其它的Python扩充库。例如SciPy,这个库提供了更多与MATLAB相似的功能;以及Matplotlib,这是一个与MATLAB内置绘图功能类似的库。而从本质上来说,NumPy与MATLAB同样是利用BLASLAPACK来提供高效率的线性代数运算。

    ndarray 数据结构[编辑]

    NumPy的核心功能是"ndarray"(即n-dimensional array,多维数组)数据结构。这是一个表示多维度、同质并且固定大小的数组对象。而由一个与此数组相关系的数据类型对象来描述其数组元素的数据格式(例如其字符组顺序、在内存中占用的字符组数量、整数或者浮点数等等)。

    • Scipy

    SciPy是一个开源Python算法库和数学工具包。

    SciPy包含的模块有最优化线性代数积分插值特殊函数快速傅里叶变换信号处理图像处理常微分方程求解和其他科学与工程中常用的计算。与其功能相类似的软件还有MATLABGNU OctaveScilab

    • matplotlib
    • sklearn
    •  iris:
      •   http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

     

     

     

  • 相关阅读:
    浅谈分层图最短路问题
    [Luogu P2574]XOR的艺术
    luogu P2419 [USACO08JAN]牛大赛Cow Contest
    luogu P1119 灾后重建
    [国家集训队]跳跳棋
    洛谷P4147 玉蟾宫
    [ZJOI2007]棋盘制作
    树状数组模版
    Nearest Common Ancestor
    P1260 工程规划
  • 原文地址:https://www.cnblogs.com/maggie94/p/6832560.html
Copyright © 2011-2022 走看看