遗传算法(genetic algorithm)是进化算法的一种。来源于达尔文的生物进化学——“物竞天择,适者生存”。一个种群在繁衍的过程中,通过交叉繁衍和个体变异产生了新的一代。新一代中有的个体能适应当前环境很好的生存从而继续繁衍,而有的个体因无法适应环境而被环境淘汰。
如何用计算机表示?
一个种群中的每个个体,都可以用DNA来表示,DNA的计算机表示可以用固定长度的二进制码表示,如010101。标准的交叉繁衍过程可以分别使用两个个体一半的DNA序列拼接而成。如:
000111,010101 ——> 000101
个体变异过程可以通过对生成的子个体的某个位置的DNA进行变化,如:
000101 ——> 000111
新生成的个体对环境的适应性,根据实际任务的目标函数而定,以DNA为自变量得到因变量目标函数的值。
能解决什么问题?
遗传算法通常认为是一种搜索算法,在以DNA为变量定义的解空间中,根据目标函数逼近近似最优解的过程。使用遗传算法可以解决旅行商(TSP)问题、最小生成树问题等。
主要特点
其主要特点是通过生物进化规律定义了一种搜索策略,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。
实践
使用遗传算法解决TSP问题,这里的交叉算子和变异算子与标准遗传算法不同,因为得保证路径不能重复,这样做避免了无效个体的产生,且以较高概率搜索解空间中各个可行解。
""" Visualize Genetic Algorithm to find the shortest path for travel sales problem. Visit my tutorial website for more: https://morvanzhou.github.io/tutorials/ """ import matplotlib.pyplot as plt import numpy as np N_CITIES = 20 # DNA size CROSS_RATE = 0.1 MUTATE_RATE = 0.02 POP_SIZE = 500 N_GENERATIONS = 500 class GA(object): def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ): self.DNA_size = DNA_size self.cross_rate = cross_rate self.mutate_rate = mutation_rate self.pop_size = pop_size self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)]) def translateDNA(self, DNA, city_position): # get cities' coord in order line_x = np.empty_like(DNA, dtype=np.float64) line_y = np.empty_like(DNA, dtype=np.float64) for i, d in enumerate(DNA): city_coord = city_position[d] line_x[i, :] = city_coord[:, 0] line_y[i, :] = city_coord[:, 1] return line_x, line_y def get_fitness(self, line_x, line_y): total_distance = np.empty((line_x.shape[0],), dtype=np.float64) for i, (xs, ys) in enumerate(zip(line_x, line_y)): total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys)))) fitness = np.exp(self.DNA_size * 2 / total_distance) return fitness, total_distance def select(self, fitness): idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum()) return self.pop[idx] def crossover(self, parent, pop): if np.random.rand() < self.cross_rate: i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points keep_city = parent[~cross_points] # find the city number swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)] parent[:] = np.concatenate((keep_city, swap_city)) return parent def mutate(self, child): for point in range(self.DNA_size): if np.random.rand() < self.mutate_rate: swap_point = np.random.randint(0, self.DNA_size) swapA, swapB = child[point], child[swap_point] child[point], child[swap_point] = swapB, swapA return child def evolve(self, fitness): pop = self.select(fitness) pop_copy = pop.copy() for parent in pop: # for every parent child = self.crossover(parent, pop_copy) child = self.mutate(child) parent[:] = child self.pop = pop class TravelSalesPerson(object): def __init__(self, n_cities): self.city_position = np.random.rand(n_cities, 2) plt.ion() def plotting(self, lx, ly, total_d): plt.cla() plt.scatter(self.city_position[:, 0].T, self.city_position[:, 1].T, s=100, c='k') plt.plot(lx.T, ly.T, 'r-') plt.text(-0.05, -0.05, "Total distance=%.2f" % total_d, fontdict={'size': 20, 'color': 'red'}) plt.xlim((-0.1, 1.1)) plt.ylim((-0.1, 1.1)) plt.pause(0.01) ga = GA(DNA_size=N_CITIES, cross_rate=CROSS_RATE, mutation_rate=MUTATE_RATE, pop_size=POP_SIZE) env = TravelSalesPerson(N_CITIES) for generation in range(N_GENERATIONS): lx, ly = ga.translateDNA(ga.pop, env.city_position) fitness, total_distance = ga.get_fitness(lx, ly) ga.evolve(fitness) best_idx = np.argmax(fitness) print('Gen:', generation, '| best fit: %.2f' % fitness[best_idx],) env.plotting(lx[best_idx], ly[best_idx], total_distance[best_idx]) plt.ioff() plt.show()
参考文献