zoukankan      html  css  js  c++  java
  • go学习笔记 sync/once源码 和 sync/WaitGroup源码

    sync.Once.Do(f func())是一个挺有趣的东西,能保证once只执行一次,无论你是否更换once.Do(xx)这里的方法,这个sync.Once块只会执行一次。

    package sync
     
    import (
        "sync/atomic"
    )
     
    // Once is an object that will perform exactly one action.
    type Once struct {
        // done indicates whether the action has been performed.
        // It is first in the struct because it is used in the hot path.
        // The hot path is inlined at every call site.
        // Placing done first allows more compact instructions on some architectures (amd64/x86),
        // and fewer instructions (to calculate offset) on other architectures.
        done uint32 // 初始值为0表示还未执行过,1表示已经执行过
        m    Mutex
    }
     
    // Do calls the function f if and only if Do is being called for the
    // first time for this instance of Once. In other words, given
    //     var once Once
    // if once.Do(f) is called multiple times, only the first call will invoke f,
    // even if f has a different value in each invocation. A new instance of
    // Once is required for each function to execute.
    //
    // Do is intended for initialization that must be run exactly once. Since f
    // is niladic, it may be necessary to use a function literal to capture the
    // arguments to a function to be invoked by Do:
    //     config.once.Do(func() { config.init(filename) })
    //
    // Because no call to Do returns until the one call to f returns, if f causes
    // Do to be called, it will deadlock.
    //
    // If f panics, Do considers it to have returned; future calls of Do return
    // without calling f.
    //
    func (o *Once) Do(f func()) {
        // Note: Here is an incorrect implementation of Do:
        //
        //    if atomic.CompareAndSwapUint32(&o.done, 0, 1) {
        //        f()
        //    }
        //
        // Do guarantees that when it returns, f has finished.
        // This implementation would not implement that guarantee:
        // given two simultaneous calls, the winner of the cas would
        // call f, and the second would return immediately, without
        // waiting for the first's call to f to complete.
        // This is why the slow path falls back to a mutex, and why
        // the atomic.StoreUint32 must be delayed until after f returns.
        // 每次一进来先读标识位 0 标识没有被执行过,1 标识已经被执行过
        if atomic.LoadUint32(&o.done) == 0 {
            // Outlined slow-path to allow inlining of the fast-path.
            o.doSlow(f)
        }
    }
     
    func (o *Once) doSlow(f func()) {
        o.m.Lock() // 施加互斥锁
        defer o.m.Unlock()
        if o.done == 0 {
            defer atomic.StoreUint32(&o.done, 1)
            f()
        }
    }

    从上面我们可以看出,once只有一个 Do 方法;once的结构体中只定义了两个字段:一个mutex的m,一个代表标识位的done。

    下面我们来看看Do方法的流程:

    WaitGroup用于等待一组线程的结束。父线程调用Add 方法来设定应等待的线程数量。每个被等待的线程在结束时应调用Done方法。同时,主线程里可以调用wait方法阻塞至所有线程结束。 注意:Add和创建协程的数量一定要匹配,否则会产出panic
    主要函数:
    func (wg *WaitGroup) Add(delta int):等待协程的数量。
    func (wg *WaitGroup) Done(): 减少waitgroup线程等待线程数量的值,一般在协程完成之后执行。
    func (wg *WaitGroup) Wait():wait方法一般在主线程调用,阻塞直到group计数减少为0。

     
    package sync
     
    import (
        "internal/race"
        "sync/atomic"
        "unsafe"
    )
     
    // A WaitGroup waits for a collection of goroutines to finish.
    // The main goroutine calls Add to set the number of
    // goroutines to wait for. Then each of the goroutines
    // runs and calls Done when finished. At the same time,
    // Wait can be used to block until all goroutines have finished.
    //
    // A WaitGroup must not be copied after first use.
    type WaitGroup struct {
        noCopy noCopy // noCopy可以嵌入到结构中,在第一次使用后不可复制
     
        // 64-bit value: high 32 bits are counter, low 32 bits are waiter count.
        // 64-bit atomic operations require 64-bit alignment, but 32-bit
        // compilers do not ensure it. So we allocate 12 bytes and then use
        // the aligned 8 bytes in them as state, and the other 4 as storage
        // for the sema.
        // 64 bit:高32 bit是计数器,低32位是 阻塞的goroutine计数。
        // 64位的原子操作需要64位的对齐,但是32位。
        // 编译器不能确保它,所以分配了12个byte对齐的8个byte作为状态。其他4个作为信号量
        state1 [3]uint32
    }
     
    // uintptr和unsafe.Pointer的区别就是:unsafe.Pointer只是单纯的通用指针类型,用于转换不同类型指针,它不可以参与指针运算;
    // 而uintptr是用于指针运算的,GC 不把 uintptr 当指针,也就是说 uintptr 无法持有对象,uintptr类型的目标会被回收。
    // state()函数可以获取到wg.state1数组中元素组成的二进制对应的十进制的值 和信号量
    // 根据编译器位数,获得标志位和等待次数的数据域
    // state returns pointers to the state and sema fields stored within wg.state1.
    func (wg *WaitGroup) state() (statep *uint64, semap *uint32) {
        if uintptr(unsafe.Pointer(&wg.state1))%8 == 0 {
           // 是否是 64位机器:因为64位机器站高8位 信号量在后面
            return (*uint64)(unsafe.Pointer(&wg.state1)), &wg.state1[2]
        } else {
            // 如果是 32位机器,型号量在最前面
            return (*uint64)(unsafe.Pointer(&wg.state1[1])), &wg.state1[0]
        }
    }
     
    // Add adds delta, which may be negative, to the WaitGroup counter.
    // If the counter becomes zero, all goroutines blocked on Wait are released.
    // If the counter goes negative, Add panics.
    //
    // Note that calls with a positive delta that occur when the counter is zero
    // must happen before a Wait. Calls with a negative delta, or calls with a
    // positive delta that start when the counter is greater than zero, may happen
    // at any time.
    // Typically this means the calls to Add should execute before the statement
    // creating the goroutine or other event to be waited for.
    // If a WaitGroup is reused to wait for several independent sets of events,
    // new Add calls must happen after all previous Wait calls have returned.
    // See the WaitGroup example.
    func (wg *WaitGroup) Add(delta int) {
        // 获取到wg.state1数组中元素组成的二进制对应的十进制的值的指针 和信号量
        statep, semap := wg.state()
        if race.Enabled {
            _ = *statep // trigger nil deref early
            if delta < 0 {
                // Synchronize decrements with Wait.
                race.ReleaseMerge(unsafe.Pointer(wg))
            }
            race.Disable()
            defer race.Enable()
        }
        // 将标记为加delta 因为高32位是计数器 所以把 delta的值左移32位,并从数组的首元素处开始赋值
        state := atomic.AddUint64(statep, uint64(delta)<<32)
        v := int32(state >> 32) // 获取计数器的值:转int32
        //获得调用 wait()等待次数:转uint32
        w := uint32(state)
        if race.Enabled && delta > 0 && v == int32(delta) {
            // The first increment must be synchronized with Wait.
            // Need to model this as a read, because there can be
            // several concurrent wg.counter transitions from 0.
            race.Read(unsafe.Pointer(semap))
        }
        // 计数器为负数,报panic
        //标记位不能小于0(done过多或者Add()负值太多)
        if v < 0 {
            panic("sync: negative WaitGroup counter")
        }
        // 不能Add 与Wait 同时调用
        if w != 0 && delta > 0 && v == int32(delta) {
            panic("sync: WaitGroup misuse: Add called concurrently with Wait")
        }
        // Add 完毕
        if v > 0 || w == 0 {
            return
        }
        // This goroutine has set counter to 0 when waiters > 0.
        // Now there can't be concurrent mutations of state:
        // - Adds must not happen concurrently with Wait,
        // - Wait does not increment waiters if it sees counter == 0.
        // Still do a cheap sanity check to detect WaitGroup misuse.
        // 当等待计数器> 0时,而goroutine将设置为0。
        // 此时不可能有同时发生的状态突变:
        // - Add()不能与 Wait() 同时发生,
        // - 如果计数器counter == 0,不再增加等待计数器
        // 不能Add 与Wait 同时调用
        if *statep != state {
            panic("sync: WaitGroup misuse: Add called concurrently with Wait")
        }
        // Reset waiters count to 0.
        *statep = 0 // 所有状态位清零
        for ; w != 0; w-- {
            // 目的是作为一个简单的wakeup原语,以供同步使用。true为唤醒排在等待队列的第一个goroutine
            runtime_Semrelease(semap, false, 0)
        }
    }
     
    // Done decrements the WaitGroup counter by one.
    // Done方法其实就是Add(-1)
    func (wg *WaitGroup) Done() {
        wg.Add(-1)
    }
     
    // Wait blocks until the WaitGroup counter is zero.
    // Wait 会一直阻塞到 计数器值为0为止
    func (wg *WaitGroup) Wait() {
        statep, semap := wg.state()
        if race.Enabled {
            _ = *statep // trigger nil deref early
            race.Disable()
        }
        //循环检查计数器V啥时候等于0
        for {
            state := atomic.LoadUint64(statep)
            v := int32(state >> 32)
            w := uint32(state)
            if v == 0 {
                // Counter is 0, no need to wait.
                if race.Enabled {
                    race.Enable()
                    race.Acquire(unsafe.Pointer(wg))
                }
                return
            }
            // Increment waiters count.
            // 尚有未执行完的go程,等待标志位+1(直接在低位处理,无需移位)
            // 增加等待goroution计数,对低32位加1,不需要移位
            if atomic.CompareAndSwapUint64(statep, state, state+1) {
                if race.Enabled && w == 0 {
                    // Wait must be synchronized with the first Add.
                    // Need to model this is as a write to race with the read in Add.
                    // As a consequence, can do the write only for the first waiter,
                    // otherwise concurrent Waits will race with each other.
                    race.Write(unsafe.Pointer(semap))
                }
                // 目的是作为一个简单的sleep原语,以供同步使用
                runtime_Semacquire(semap)
                // 在上一次Wait返回之前重新使用WaitGroup,即在之前的Done 中没有清空 计数量就会有问题
                if *statep != 0 {
                    panic("sync: WaitGroup is reused before previous Wait has returned")
                }
                if race.Enabled {
                    race.Enable()
                    race.Acquire(unsafe.Pointer(wg))
                }
                return
            }
        }
    }

    Add:

    Wait:

  • 相关阅读:
    【血型】+【星座】准到吓人
    一落叶而知秋为什么有些树到冬天要落叶?
    WebDAV介绍
    Ruby concurrency explained
    lexus.cnblogs.com
    微博拉近了大家的距离
    High Performance Ruby Part 3: nonblocking IO and web application scalability
    Taglib确实减轻了开发负担[转]
    php中urldecode()和urlencode()起什么作用啊
    header中ContentDisposition的作用
  • 原文地址:https://www.cnblogs.com/majiang/p/14201522.html
Copyright © 2011-2022 走看看