我们从C# Queue 和Stack的实现知道Queue是用数组来实现的,数组的元素不断的通过Array.Copy从一个数组移动到另一个数组,ConcurrentQueue我们需要关心2点:1线程安全是怎么实现的,2队列又是怎么实现的?我们来看看其实现code:
public interface IProducerConsumerCollection<T> : IEnumerable<T>, ICollection { void CopyTo(T[] array, int index); bool TryAdd(T item); bool TryTake(out T item); T[] ToArray(); } public class ConcurrentQueue<T> : IProducerConsumerCollection<T>, IReadOnlyCollection<T> { [NonSerialized] private volatile Segment m_head; [NonSerialized] private volatile Segment m_tail; private T[] m_serializationArray; // Used for custom serialization. private const int SEGMENT_SIZE = 32; //number of snapshot takers, GetEnumerator(), ToList() and ToArray() operations take snapshot. [NonSerialized] internal volatile int m_numSnapshotTakers = 0; public ConcurrentQueue() { m_head = m_tail = new Segment(0, this); } public ConcurrentQueue(IEnumerable<T> collection) { if (collection == null) { throw new ArgumentNullException("collection"); } InitializeFromCollection(collection); } private void InitializeFromCollection(IEnumerable<T> collection) { Segment localTail = new Segment(0, this);//use this local variable to avoid the extra volatile read/write. this is safe because it is only called from ctor m_head = localTail; int index = 0; foreach (T element in collection) { Contract.Assert(index >= 0 && index < SEGMENT_SIZE); localTail.UnsafeAdd(element); index++; if (index >= SEGMENT_SIZE) { localTail = localTail.UnsafeGrow(); index = 0; } } m_tail = localTail; } public void Enqueue(T item) { SpinWait spin = new SpinWait(); while (true) { Segment tail = m_tail; if (tail.TryAppend(item)) return; spin.SpinOnce(); } } public bool TryDequeue(out T result) { while (!IsEmpty) { Segment head = m_head; if (head.TryRemove(out result)) return true; //since method IsEmpty spins, we don't need to spin in the while loop } result = default(T); return false; } private class Segment { internal volatile T[] m_array; internal volatile VolatileBool[] m_state; private volatile Segment m_next; internal readonly long m_index; private volatile int m_low; private volatile int m_high; private volatile ConcurrentQueue<T> m_source; internal Segment(long index, ConcurrentQueue<T> source) { m_array = new T[SEGMENT_SIZE]; m_state = new VolatileBool[SEGMENT_SIZE]; //all initialized to false m_high = -1; Contract.Assert(index >= 0); m_index = index; m_source = source; } internal void UnsafeAdd(T value) { Contract.Assert(m_high < SEGMENT_SIZE - 1); m_high++; m_array[m_high] = value; m_state[m_high].m_value = true; } internal Segment UnsafeGrow() { Contract.Assert(m_high >= SEGMENT_SIZE - 1); Segment newSegment = new Segment(m_index + 1, m_source); //m_index is Int64, we don't need to worry about overflow m_next = newSegment; return newSegment; } internal void Grow() { //no CAS is needed, since there is no contention (other threads are blocked, busy waiting) Segment newSegment = new Segment(m_index + 1, m_source); //m_index is Int64, we don't need to worry about overflow m_next = newSegment; Contract.Assert(m_source.m_tail == this); m_source.m_tail = m_next; } internal bool TryAppend(T value) { if (m_high >= SEGMENT_SIZE - 1) { return false; } try { } finally { newhigh = Interlocked.Increment(ref m_high); if (newhigh <= SEGMENT_SIZE - 1) { m_array[newhigh] = value; m_state[newhigh].m_value = true; } if (newhigh == SEGMENT_SIZE - 1) { Grow(); } } return newhigh <= SEGMENT_SIZE - 1; } internal bool TryRemove(out T result) { SpinWait spin = new SpinWait(); int lowLocal = Low, highLocal = High; while (lowLocal <= highLocal) { if (Interlocked.CompareExchange(ref m_low, lowLocal + 1, lowLocal) == lowLocal) { SpinWait spinLocal = new SpinWait(); while (!m_state[lowLocal].m_value) { spinLocal.SpinOnce(); } result = m_array[lowLocal]; if (m_source.m_numSnapshotTakers <= 0) { m_array[lowLocal] = default(T); //release the reference to the object. } if (lowLocal + 1 >= SEGMENT_SIZE) { spinLocal = new SpinWait(); while (m_next == null) { spinLocal.SpinOnce(); } Contract.Assert(m_source.m_head == this); m_source.m_head = m_next; } return true; } else { spin.SpinOnce(); lowLocal = Low; highLocal = High; } }//end of while result = default(T); return false; } } }
首先ConcurrentQueue构造函数没有 int capacity参数了,里面的线程安全是用SpinWait自旋来实现的,当我想往队列ConcurrentQueue添加一个元素的时候,如果添加失败,那程序自旋等待一下,再次添加元素,直到添加成功。里面用到了一个Segment自定义的类型,Segment的m_array是一个含有32个元素的数组,m_state和m_array一一对应,主要是用来标记m_array里面的元素是否有效。m_next是用来连接到下一个Segment的,m_high与添加元素密切相关,m_low与移除元素有关。先看TryAppend方法,优先将当前的newhigh原子加1【newhigh = Interlocked.Increment(ref m_high);】,这样假如有多个线程同时添加元素,每一个线程拿到的newhigh 值不用,那么它们操作m_array的下标就不同了,所以彼此之间不影响,到现在添加的线程安全就明白了。那么队列又是如何实现的了?我们来看看Grow()方法,当Segment的32个元素都被使用了,那么这个时候添加元素需要扩容,扩容的方式是重新实例一个Segment,旧的Segment的m_next属性指向新的得Segment,这样就组成了一个Segment链表(Segment核心是数组),它们的index从0开始,第一个Segment的index为0,第2个Segment的index为1....。TryRemove的实现类似,m_low其实是Segment的m_array下标,程序自旋一次,查找是否有元素,如果有元素必须检查元素是否有效(!m_state[lowLocal].m_value,因为在天加元素的时候是先增加newhigh变量,然后在设置m_state[newhigh].m_value = true有效),所以移除元素的时候必选验证元素是否有效。然后释放元素m_array[lowLocal] = default(T);,如果第一个Segment的元素全部移除了【if (lowLocal + 1 >= SEGMENT_SIZE)】,那么我们就应该开始移除第2个Segment元素了,需要检查是否有第2个Segment,如果没有 就自旋等待吧,然后m_head指向第下一个Segment【m_source.m_head = m_next;】线程安全依靠SpinWait 的自旋和原子操作Interlocked.Increment和Interlocked.CompareExchange来实现的。