zoukankan      html  css  js  c++  java
  • 2.1.4 Healthy Holsteins

    Healthy Holsteins
    Burch & Kolstad

    Farmer John prides himself on having the healthiest dairy cows in the world. He knows the vitamin content for one scoop of each feed type and the minimum daily vitamin requirement for the cows. Help Farmer John feed his cows so they stay healthy while minimizing the number of scoops that a cow is fed.

    Given the daily requirements of each kind of vitamin that a cow needs, identify the smallest combination of scoops of feed a cow can be fed in order to meet at least the minimum vitamin requirements.

    Vitamins are measured in integer units. Cows can be fed at most one scoop of any feed type. It is guaranteed that a solution exists for all contest input data.

    PROGRAM NAME: holstein

    INPUT FORMAT

    Line 1: integer V (1 <= V <= 25), the number of types of vitamins
    Line 2: V integers (1 <= each one <= 1000), the minimum requirement for each of the V vitamins that a cow requires each day
    Line 3: integer G (1 <= G <= 15), the number of types of feeds available
    Lines 4..G+3: V integers (0 <= each one <= 1000), the amount of each vitamin that one scoop of this feed contains. The first line of these G lines describes feed #1; the second line describes feed #2; and so on.

    SAMPLE INPUT (file holstein.in)

    4
    100 200 300 400
    3
    50   50  50  50
    200 300 200 300
    900 150 389 399
    

    OUTPUT FORMAT

    The output is a single line of output that contains:

    • the minimum number of scoops a cow must eat, followed by:
    • a SORTED list (from smallest to largest) of the feed types the cow is given

    If more than one set of feedtypes yield a minimum of scoops, choose the set with the smallest feedtype numbers.

    SAMPLE OUTPUT (file holstein.out)

    2 1 3
    
    {
    ID: makeeca1
    PROG: holstein
    LANG: PASCAL
    }
    const maxn=1000;
    var v,g,i,j,x,p,pos,min:longint;f:boolean;
        rec,a,b,need:array[1..maxn]of longint;
        num:array[1..maxn,1..maxn]of longint;
    
    begin
      assign(input,'holstein.in');reset(input);
      assign(output,'holstein.out');rewrite(output);
      readln(v);
      for i:=1 to v do read(need[i]);readln;
      readln(g);
      for i:=1 to g do
      begin
        for j:=1 to v do read(num[i,j]);
        readln;
      end;          close(input);
      pos:=1<<g-1;
      fillchar(rec,sizeof(rec),0);min:=maxlongint;
      for p:=1 to pos do
      begin
        fillchar(a,sizeof(a),0);
        fillchar(b,sizeof(b),0);
        x:=0;
        for i:=1 to g do
        if (1<< (i-1))and p=1<< (i-1) then
        begin
          for j:=1 to v do inc(a[j],num[i,j]);
          inc(x);
          b[x]:=i;
        end;
        f:=true;
        for i:=1 to v do
        if a[i]<need[i]then f:=false;
        if f then
          if x<min then
          begin
            min:=x;
            fillchar(rec,sizeof(rec),0);
            for i:=1 to x do rec[i]:=b[i]
          end;
      end;
      write(min);
      for i:=1 to min do write(' ',rec[i]);writeln;
      close(output);
    end.
  • 相关阅读:
    php设计模式之桥接模式
    php设计模式适配器模式
    php设计模式之装饰器模式
    php设计模式之策略模式
    php设计模式之责任链模式
    Graphics.DrawString 方法
    算法7-10:拓扑排序
    一年成为Emacs高手(像神一样使用编辑器)
    动态规划0—1背包问题
    辛星解读为什么PHP须要模板
  • 原文地址:https://www.cnblogs.com/makeecat/p/3274554.html
Copyright © 2011-2022 走看看