zoukankan      html  css  js  c++  java
  • Android图片处理

    1.图片处理

     1.圆角图片

        /**
         * 转换成圆角
         * 
         * @param bmp
         * @param roundPx
         * @return
         */
        public static Bitmap convertToRoundedCorner(Bitmap bmp, float roundPx) {
    
            Bitmap newBmp = Bitmap.createBitmap(bmp.getWidth(), bmp.getHeight(),
                    Config.ARGB_8888);
            // 得到画布
            Canvas canvas = new Canvas(newBmp);
    
            final int color = 0xff424242;
            final Paint paint = new Paint();
            final Rect rect = new Rect(0, 0, bmp.getWidth(), bmp.getHeight());
            final RectF rectF = new RectF(rect);
    
            paint.setAntiAlias(true);
            canvas.drawARGB(0, 0, 0, 0);
            paint.setColor(color);
            // 第二个和第三个参数一样则画的是正圆的一角,否则是椭圆的一角
            canvas.drawRoundRect(rectF, roundPx, roundPx, paint);
    
            paint.setXfermode(new PorterDuffXfermode(Mode.SRC_IN));
            canvas.drawBitmap(bmp, rect, rect, paint);
    
            return newBmp;
        }

    2.滤镜效果

    1.黑白效果

    /**
         * 将彩色图转换为黑白图
         * 
         * @param 位图
         * @return 返回转换好的位图
         */
        public static Bitmap convertToBlackWhite(Bitmap bmp) {
            int width = bmp.getWidth(); // 获取位图的宽
            int height = bmp.getHeight(); // 获取位图的高
    
            int[] pixels = new int[width * height]; // 通过位图的大小创建像素点数组
    
            bmp.getPixels(pixels, 0, width, 0, 0, width, height);
            int alpha = 0xFF << 24;
            for (int i = 0; i < height; i++) {
                for (int j = 0; j < width; j++) {
                    int grey = pixels[width * i + j];
    
                    int red = ((grey & 0x00FF0000) >> 16);
                    int green = ((grey & 0x0000FF00) >> 8);
                    int blue = (grey & 0x000000FF);
    
                    grey = (int) (red * 0.3 + green * 0.59 + blue * 0.11);
                    grey = alpha | (grey << 16) | (grey << 8) | grey;
                    pixels[width * i + j] = grey;
                }
            }
            Bitmap newBmp = Bitmap.createBitmap(width, height, Config.RGB_565);
            newBmp.setPixels(pixels, 0, width, 0, 0, width, height);
            return newBmp;
        }


    2.高斯模糊

    /**
         * 高斯模糊
         * 
         * @param bmp
         * @return
         */
        public static Bitmap convertToBlur(Bitmap bmp) {
            // 高斯矩阵
            int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
    
            int width = bmp.getWidth();
            int height = bmp.getHeight();
            Bitmap newBmp = Bitmap.createBitmap(width, height,
                    Bitmap.Config.RGB_565);
    
            int pixR = 0;
            int pixG = 0;
            int pixB = 0;
    
            int pixColor = 0;
    
            int newR = 0;
            int newG = 0;
            int newB = 0;
    
            int delta = 16; // 值越小图片会越亮,越大则越暗
    
            int idx = 0;
            int[] pixels = new int[width * height];
            bmp.getPixels(pixels, 0, width, 0, 0, width, height);
            for (int i = 1, length = height - 1; i < length; i++) {
                for (int k = 1, len = width - 1; k < len; k++) {
                    idx = 0;
                    for (int m = -1; m <= 1; m++) {
                        for (int n = -1; n <= 1; n++) {
                            pixColor = pixels[(i + m) * width + k + n];
                            pixR = Color.red(pixColor);
                            pixG = Color.green(pixColor);
                            pixB = Color.blue(pixColor);
    
                            newR = newR + pixR * gauss[idx];
                            newG = newG + pixG * gauss[idx];
                            newB = newB + pixB * gauss[idx];
                            idx++;
                        }
                    }
    
                    newR /= delta;
                    newG /= delta;
                    newB /= delta;
    
                    newR = Math.min(255, Math.max(0, newR));
                    newG = Math.min(255, Math.max(0, newG));
                    newB = Math.min(255, Math.max(0, newB));
    
                    pixels[i * width + k] = Color.argb(255, newR, newG, newB);
    
                    newR = 0;
                    newG = 0;
                    newB = 0;
                }
            }
    
            newBmp.setPixels(pixels, 0, width, 0, 0, width, height);
    
            return newBmp;
        }

    3.素描效果

        /**
         * 素描效果
         * 
         * @param bmp
         * @return
         */
        public static Bitmap convertToSketch(Bitmap bmp) {
            int pos, row, col, clr;
            int width = bmp.getWidth();
            int height = bmp.getHeight();
            int[] pixSrc = new int[width * height];
            int[] pixNvt = new int[width * height];
            // 先对图象的像素处理成灰度颜色后再取反
            bmp.getPixels(pixSrc, 0, width, 0, 0, width, height);
    
            for (row = 0; row < height; row++) {
                for (col = 0; col < width; col++) {
                    pos = row * width + col;
                    pixSrc[pos] = (Color.red(pixSrc[pos])
                            + Color.green(pixSrc[pos]) + Color.blue(pixSrc[pos])) / 3;
                    pixNvt[pos] = 255 - pixSrc[pos];
                }
            }
    
            // 对取反的像素进行高斯模糊, 强度可以设置,暂定为5.0
            gaussGray(pixNvt, 5.0, 5.0, width, height);
    
            // 灰度颜色和模糊后像素进行差值运算
            for (row = 0; row < height; row++) {
                for (col = 0; col < width; col++) {
                    pos = row * width + col;
    
                    clr = pixSrc[pos] << 8;
                    clr /= 256 - pixNvt[pos];
                    clr = Math.min(clr, 255);
    
                    pixSrc[pos] = Color.rgb(clr, clr, clr);
                }
            }
            bmp.setPixels(pixSrc, 0, width, 0, 0, width, height);
    
            return bmp;
    
        }
    
        private static int gaussGray(int[] psrc, double horz, double vert,
                int width, int height) {
            int[] dst, src;
            double[] n_p, n_m, d_p, d_m, bd_p, bd_m;
            double[] val_p, val_m;
            int i, j, t, k, row, col, terms;
            int[] initial_p, initial_m;
            double std_dev;
            int row_stride = width;
            int max_len = Math.max(width, height);
            int sp_p_idx, sp_m_idx, vp_idx, vm_idx;
    
            val_p = new double[max_len];
            val_m = new double[max_len];
    
            n_p = new double[5];
            n_m = new double[5];
            d_p = new double[5];
            d_m = new double[5];
            bd_p = new double[5];
            bd_m = new double[5];
    
            src = new int[max_len];
            dst = new int[max_len];
    
            initial_p = new int[4];
            initial_m = new int[4];
    
            // 垂直方向
            if (vert > 0.0) {
                vert = Math.abs(vert) + 1.0;
                std_dev = Math.sqrt(-(vert * vert) / (2 * Math.log(1.0 / 255.0)));
    
                // 初试化常量
                findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
    
                for (col = 0; col < width; col++) {
                    for (k = 0; k < max_len; k++) {
                        val_m[k] = val_p[k] = 0;
                    }
    
                    for (t = 0; t < height; t++) {
                        src[t] = psrc[t * row_stride + col];
                    }
    
                    sp_p_idx = 0;
                    sp_m_idx = height - 1;
                    vp_idx = 0;
                    vm_idx = height - 1;
    
                    initial_p[0] = src[0];
                    initial_m[0] = src[height - 1];
    
                    for (row = 0; row < height; row++) {
                        terms = (row < 4) ? row : 4;
    
                        for (i = 0; i <= terms; i++) {
                            val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i]
                                    * val_p[vp_idx - i];
                            val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i]
                                    * val_m[vm_idx + i];
                        }
                        for (j = i; j <= 4; j++) {
                            val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0];
                            val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0];
                        }
    
                        sp_p_idx++;
                        sp_m_idx--;
                        vp_idx++;
                        vm_idx--;
                    }
    
                    transferGaussPixels(val_p, val_m, dst, 1, height);
    
                    for (t = 0; t < height; t++) {
                        psrc[t * row_stride + col] = dst[t];
                    }
                }
            }
    
            // 水平方向
            if (horz > 0.0) {
                horz = Math.abs(horz) + 1.0;
    
                if (horz != vert) {
                    std_dev = Math.sqrt(-(horz * horz)
                            / (2 * Math.log(1.0 / 255.0)));
    
                    // 初试化常量
                    findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
                }
    
                for (row = 0; row < height; row++) {
                    for (k = 0; k < max_len; k++) {
                        val_m[k] = val_p[k] = 0;
                    }
    
                    for (t = 0; t < width; t++) {
                        src[t] = psrc[row * row_stride + t];
                    }
    
                    sp_p_idx = 0;
                    sp_m_idx = width - 1;
                    vp_idx = 0;
                    vm_idx = width - 1;
    
                    initial_p[0] = src[0];
                    initial_m[0] = src[width - 1];
    
                    for (col = 0; col < width; col++) {
                        terms = (col < 4) ? col : 4;
    
                        for (i = 0; i <= terms; i++) {
                            val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i]
                                    * val_p[vp_idx - i];
                            val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i]
                                    * val_m[vm_idx + i];
                        }
                        for (j = i; j <= 4; j++) {
                            val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0];
                            val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0];
                        }
    
                        sp_p_idx++;
                        sp_m_idx--;
                        vp_idx++;
                        vm_idx--;
                    }
    
                    transferGaussPixels(val_p, val_m, dst, 1, width);
    
                    for (t = 0; t < width; t++) {
                        psrc[row * row_stride + t] = dst[t];
                    }
                }
            }
    
            return 0;
        }
    
        private static void transferGaussPixels(double[] src1, double[] src2,
                int[] dest, int bytes, int width) {
            int i, j, k, b;
            int bend = bytes * width;
            double sum;
    
            i = j = k = 0;
            for (b = 0; b < bend; b++) {
                sum = src1[i++] + src2[j++];
    
                if (sum > 255)
                    sum = 255;
                else if (sum < 0)
                    sum = 0;
    
                dest[k++] = (int) sum;
            }
        }
    
        private static void findConstants(double[] n_p, double[] n_m, double[] d_p,
                double[] d_m, double[] bd_p, double[] bd_m, double std_dev) {
            double div = Math.sqrt(2 * 3.141593) * std_dev;
            double x0 = -1.783 / std_dev;
            double x1 = -1.723 / std_dev;
            double x2 = 0.6318 / std_dev;
            double x3 = 1.997 / std_dev;
            double x4 = 1.6803 / div;
            double x5 = 3.735 / div;
            double x6 = -0.6803 / div;
            double x7 = -0.2598 / div;
            int i;
    
            n_p[0] = x4 + x6;
            n_p[1] = (Math.exp(x1)
                    * (x7 * Math.sin(x3) - (x6 + 2 * x4) * Math.cos(x3)) + Math
                    .exp(x0) * (x5 * Math.sin(x2) - (2 * x6 + x4) * Math.cos(x2)));
            n_p[2] = (2
                    * Math.exp(x0 + x1)
                    * ((x4 + x6) * Math.cos(x3) * Math.cos(x2) - x5 * Math.cos(x3)
                            * Math.sin(x2) - x7 * Math.cos(x2) * Math.sin(x3)) + x6
                    * Math.exp(2 * x0) + x4 * Math.exp(2 * x1));
            n_p[3] = (Math.exp(x1 + 2 * x0)
                    * (x7 * Math.sin(x3) - x6 * Math.cos(x3)) + Math.exp(x0 + 2
                    * x1)
                    * (x5 * Math.sin(x2) - x4 * Math.cos(x2)));
            n_p[4] = 0.0;
    
            d_p[0] = 0.0;
            d_p[1] = -2 * Math.exp(x1) * Math.cos(x3) - 2 * Math.exp(x0)
                    * Math.cos(x2);
            d_p[2] = 4 * Math.cos(x3) * Math.cos(x2) * Math.exp(x0 + x1)
                    + Math.exp(2 * x1) + Math.exp(2 * x0);
            d_p[3] = -2 * Math.cos(x2) * Math.exp(x0 + 2 * x1) - 2 * Math.cos(x3)
                    * Math.exp(x1 + 2 * x0);
            d_p[4] = Math.exp(2 * x0 + 2 * x1);
    
            for (i = 0; i <= 4; i++) {
                d_m[i] = d_p[i];
            }
    
            n_m[0] = 0.0;
            for (i = 1; i <= 4; i++) {
                n_m[i] = n_p[i] - d_p[i] * n_p[0];
            }
    
            double sum_n_p, sum_n_m, sum_d;
            double a, b;
    
            sum_n_p = 0.0;
            sum_n_m = 0.0;
            sum_d = 0.0;
    
            for (i = 0; i <= 4; i++) {
                sum_n_p += n_p[i];
                sum_n_m += n_m[i];
                sum_d += d_p[i];
            }
    
            a = sum_n_p / (1.0 + sum_d);
            b = sum_n_m / (1.0 + sum_d);
    
            for (i = 0; i <= 4; i++) {
                bd_p[i] = d_p[i] * a;
                bd_m[i] = d_m[i] * b;
            }
        }

     


     4.锐化

        /**
         * 图片锐化(拉普拉斯变换)
         * 
         * @param bmp
         * @return
         */
        public static Bitmap sharpenImageAmeliorate(Bitmap bmp) {
    
            // 拉普拉斯矩阵
            int[] laplacian = new int[] { -1, -1, -1, -1, 9, -1, -1, -1, -1 };
    
            int width = bmp.getWidth();
            int height = bmp.getHeight();
            Bitmap bitmap = Bitmap.createBitmap(width, height,
                    Bitmap.Config.RGB_565);
    
            int pixR = 0;
            int pixG = 0;
            int pixB = 0;
    
            int pixColor = 0;
    
            int newR = 0;
            int newG = 0;
            int newB = 0;
    
            int idx = 0;
            float alpha = 0.3F;
            int[] pixels = new int[width * height];
            bmp.getPixels(pixels, 0, width, 0, 0, width, height);
            for (int i = 1, length = height - 1; i < length; i++) {
                for (int k = 1, len = width - 1; k < len; k++) {
                    idx = 0;
                    for (int m = -1; m <= 1; m++) {
                        for (int n = -1; n <= 1; n++) {
                            pixColor = pixels[(i + n) * width + k + m];
                            pixR = Color.red(pixColor);
                            pixG = Color.green(pixColor);
                            pixB = Color.blue(pixColor);
    
                            newR = newR + (int) (pixR * laplacian[idx] * alpha);
                            newG = newG + (int) (pixG * laplacian[idx] * alpha);
                            newB = newB + (int) (pixB * laplacian[idx] * alpha);
                            idx++;
                        }
                    }
    
                    newR = Math.min(255, Math.max(0, newR));
                    newG = Math.min(255, Math.max(0, newG));
                    newB = Math.min(255, Math.max(0, newB));
    
                    pixels[i * width + k] = Color.argb(255, newR, newG, newB);
                    newR = 0;
                    newG = 0;
                    newB = 0;
                }
            }
    
            bitmap.setPixels(pixels, 0, width, 0, 0, width, height);
            return bitmap;
        }


    5.浮雕

        /**
         * 锐化效果
         * 
         * @param bmp
         * @return
         */
        public static Bitmap convertToEmboss(Bitmap bmp) {
            int width = bmp.getWidth();
            int height = bmp.getHeight();
            Bitmap newBmp = Bitmap.createBitmap(width, height,
                    Bitmap.Config.RGB_565);
    
            int pixR = 0;
            int pixG = 0;
            int pixB = 0;
    
            int pixColor = 0;
    
            int newR = 0;
            int newG = 0;
            int newB = 0;
    
            int[] pixels = new int[width * height];
            bmp.getPixels(pixels, 0, width, 0, 0, width, height);
            int pos = 0;
            for (int i = 1, length = height - 1; i < length; i++) {
                for (int k = 1, len = width - 1; k < len; k++) {
                    pos = i * width + k;
                    pixColor = pixels[pos];
    
                    pixR = Color.red(pixColor);
                    pixG = Color.green(pixColor);
                    pixB = Color.blue(pixColor);
    
                    pixColor = pixels[pos + 1];
                    newR = Color.red(pixColor) - pixR + 127;
                    newG = Color.green(pixColor) - pixG + 127;
                    newB = Color.blue(pixColor) - pixB + 127;
    
                    newR = Math.min(255, Math.max(0, newR));
                    newG = Math.min(255, Math.max(0, newG));
                    newB = Math.min(255, Math.max(0, newB));
    
                    pixels[pos] = Color.argb(255, newR, newG, newB);
                }
            }
    
            newBmp.setPixels(pixels, 0, width, 0, 0, width, height);
            return newBmp;
        }


    3.参考&资料

    1.https://github.com/daizhenjun/ImageFilterForAndroid

    2.http://www.eoeandroid.com/thread-178656-1-1.html

    3.http://www.oschina.net/question/231733_44154

    4.http://gundumw100.iteye.com/blog/849729

    5.http://my.oschina.net/ryanhoo/blog/86842

    6.http://www.jhlabs.com/ip/filters/index.html

    7.图片裁剪:http://www.zhaoweihua.cn/android-cropimage-149.html

  • 相关阅读:
    hdu_6836 Expectation
    hdu_6820 Tree
    luogu P1039 侦探推理
    自己动手实现区块链
    第六章 钱包管理界面和区块链浏览器
    第五章 自己动手写比特币之交易中继
    第四章 自己动手写比特币之钱包
    第三章 自己动手写区块链之交易
    第二章 工作量证明和挖矿
    第一章:最小可行区块链
  • 原文地址:https://www.cnblogs.com/malinkang/p/2970248.html
Copyright © 2011-2022 走看看