zoukankan      html  css  js  c++  java
  • ZOJ Problem Set–1331 Perfect Cubes

    Time Limit: 10 Seconds      Memory Limit: 32768 KB


    For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the ``perfect cube'' equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a, b, c, d} which satisfy this equation for a <= 200.

    Output

    The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

    The first part of the output is shown here:

    Cube = 6, Triple = (3,4,5)
    Cube = 12, Triple = (6,8,10)
    Cube = 18, Triple = (2,12,16)
    Cube = 18, Triple = (9,12,15)
    Cube = 19, Triple = (3,10,18)
    Cube = 20, Triple = (7,14,17)
    Cube = 24, Triple = (12,16,20)

    Note: The programmer will need to be concerned with an efficient implementation. The official time limit for this problem is 2 minutes, and it is indeed possible to write a solution to this problem which executes in under 2 minutes on a 33 MHz 80386 machine. Due to the distributed nature of the contest in this region, judges have been instructed to make the official time limit at their site the greater of 2 minutes or twice the time taken by the judge's solution on the machine being used to judge this problem.


    Source: Mid-Central USA 1995

    #include<iostream>
    
    #include<math.h>
    
    #include<string>
    
    #include<set>
    
    using namespace std;
    
    class Cube
    
    {
    
    public:
    
      int a, b,c,d;
    
      Cube(int a, int b,int c, int d):a(a),b(b),c(c),d(d){}
    
      bool operator<(const Cube& cube) const
    
      {
    
        return a<cube.a;
    
      }
    
    };
    
    const double MINNUMBER = 0.000000001;
    
    int main()
    
    {
    
      multiset<Cube> s;
    
      for(int b = 2; b <= 200; b++)
    
      {
    
        for(int c = b + 1; c <= 200; c++)
    
        {
    
          for(int d = c + 1; d <= 200; d++)
    
          {
    
            double ad = pow(b*1.0, 3.0) + pow(c*1.0, 3.0) + pow(d*1.0, 3.0);
    
            for(int a = d;a <= 200;a++)
    
            {
    
              double ad2 = pow(a*1.0, 3);
    
              if(ad2 > ad + MINNUMBER) break;
    
              if(ad + MINNUMBER > ad2 && ad - MINNUMBER < ad2)          
    
              {
    
                s.insert(Cube(a, b,c,d));
    
              }
    
            }
    
          }
    
        }
    
      }
    
      for(multiset<Cube>::iterator it = s.begin(); it != s.end(); it++)
    
      {
    
        cout<<"Cube = "<<it->a<<", Triple = ("<<it->b<<","<<it->c<<","<<it->d<<")"<<endl;
    
      }
    
      return 0;
    
    }

    看到题目的时间和内存要求,我就笑了,看上去好像没有任何的效率要求,2M的时间,可以容许我干很多事情了。索性也不做那么多事情了,直接用循环解决问题。

    不过在这中间还是产生了疑问,本来我是用set的,但是不知道为什么set没有办法把这样的两个元素:Cube(1,2,3), Cube(1,3,4)放进去,这两个元素看上去并不一样啊,让我小小郁闷了一下,改用multiset之后,问题解决了,不过对于set这个容器,还是有上述的疑问,回头有空再研究一下,set到底是凭什么判断两个元素一样的。

  • 相关阅读:
    初识AOP与动态代理
    Java读取打印机自定义纸张.
    通过邮箱发送html报表
    Java 代码质量
    JAVA学习笔记--匿名内部类
    JAVA学习笔记--简介几个常见关键字static、final、this、super
    JAVA学习笔记--迭代器
    JAVA学习笔记--初识容器类库
    JAVA学习笔记--策略设计模式与适配器模式
    JAVA学习笔记--接口
  • 原文地址:https://www.cnblogs.com/malloc/p/2394184.html
Copyright © 2011-2022 走看看