zoukankan      html  css  js  c++  java
  • 分析鸢尾花数据集

    下面将结合Scikit-learn官网的逻辑回归模型分析鸢尾花示例,给大家进行详细讲解及拓展。由于该数据集分类标签划分为3类(0类、1类、2类),很好的适用于逻辑回归模型。

    1. 鸢尾花数据集

    在Sklearn机器学习包中,集成了各种各样的数据集,包括前面的糖尿病数据集,这里引入的是鸢尾花卉(Iris)数据集,它是很常用的一个数据集。鸢尾花有三个亚属,分别是山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

    该数据集一共包含4个特征变量,1个类别变量。共有150个样本,iris是鸢尾植物,这里存储了其萼片和花瓣的长宽,共4个属性,鸢尾植物分三类。如表17.2所示:

    iris里有两个属性iris.data,iris.target。data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,一共采样了150条记录。
    from sklearn.datasets import load_iris   #导入数据集iris
    iris = load_iris()  #载入数据集
    print iris.data
    输出如下所示:
    [[ 5.1  3.5  1.4  0.2]
     [ 4.9  3.   1.4  0.2]
     [ 4.7  3.2  1.3  0.2]
     [ 4.6  3.1  1.5  0.2]
     ....
     [ 6.7  3.   5.2  2.3]
     [ 6.3  2.5  5.   1.9]
     [ 6.5  3.   5.2  2. ]
     [ 6.2  3.4  5.4  2.3]
     [ 5.9  3.   5.1  1.8]]
    target是一个数组,存储了data中每条记录属于哪一类鸢尾植物,所以数组的长度是150,数组元素的值因为共有3类鸢尾植物,所以不同值只有3个。种类为山鸢尾、杂色鸢尾、维吉尼亚鸢尾。
    print iris.target          #输出真实标签
    print len(iris.target)      #150个样本 每个样本4个特征
    print iris.data.shape  
    
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
     2 2]
    150
    (150L, 4L)
    从输出结果可以看到,类标共分为三类,前面50个类标位0,中间50个类标位1,后面为2。下面给详细介绍使用决策树进行对这个数据集进行测试的代码。

    2. 散点图绘制

    下列代码主要是载入鸢尾花数据集,包括数据data和标签target,然后获取其中两列数据或两个特征,核心代码为:X = [x[0] for x in DD],获取的值赋值给X变量,最后调用scatter()函数绘制散点图。

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris    #导入数据集iris
      
    #载入数据集  
    iris = load_iris()  
    print iris.data          #输出数据集  
    print iris.target         #输出真实标签  
    #获取花卉两列数据集  
    DD = iris.data  
    X = [x[0] for x in DD]  
    print X  
    Y = [x[1] for x in DD]  
    print Y  
      
    #plt.scatter(X, Y, c=iris.target, marker='x')
    plt.scatter(X[:50], Y[:50], color='red', marker='o', label='setosa') #前50个样本
    plt.scatter(X[50:100], Y[50:100], color='blue', marker='x', label='versicolor') #中间50个
    plt.scatter(X[100:], Y[100:],color='green', marker='+', label='Virginica') #后50个样本
    plt.legend(loc=2) #左上角
    plt.show()
    绘制散点图如图所示:

    3. 逻辑回归分析

    从图中可以看出,数据集线性可分的,可以划分为3类,分别对应三种类型的鸢尾花,下面采用逻辑回归对其进行分类预测。前面使用X=[x[0] for x in DD]获取第一列数据,Y=[x[1] for x in DD]获取第二列数据,这里采用另一种方法,iris.data[:, :2]获取其中两列数据(两个特征),完整代码如下:

     

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris   
    from sklearn.linear_model import LogisticRegression 
    
    #载入数据集
    iris = load_iris()         
    X = X = iris.data[:, :2]   #获取花卉两列数据集
    Y = iris.target           
    
    #逻辑回归模型
    lr = LogisticRegression(C=1e5)  
    lr.fit(X,Y)
    
    #meshgrid函数生成两个网格矩阵
    h = .02
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    
    #pcolormesh函数将xx,yy两个网格矩阵和对应的预测结果Z绘制在图片上
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(8,6))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
    
    #绘制散点图
    plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
    plt.scatter(X[50:100,0], X[50:100,1], color='blue', marker='x', label='versicolor')
    plt.scatter(X[100:,0], X[100:,1], color='green', marker='s', label='Virginica') 
    
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.legend(loc=2) 
    plt.show()
    下面作者对导入数据集后的代码进行详细讲解。

    lr = LogisticRegression(C=1e5)  
    lr.fit(X,Y)
    初始化逻辑回归模型并进行训练,C=1e5表示目标函数。

    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    获取的鸢尾花两列数据,对应为花萼长度和花萼宽度,每个点的坐标就是(x,y)。 先取X二维数组的第一列(长度)的最小值、最大值和步长h(设置为0.02)生成数组,再取X二维数组的第二列(宽度)的最小值、最大值和步长h生成数组, 最后用meshgrid函数生成两个网格矩阵xx和yy,如下所示:
    [[ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     ..., 
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]]
    [[ 1.5   1.5   1.5  ...,  1.5   1.5   1.5 ]
     [ 1.52  1.52  1.52 ...,  1.52  1.52  1.52]
     ..., 
     [ 4.88  4.88  4.88 ...,  4.88  4.88  4.88]
     [ 4.9   4.9   4.9  ...,  4.9   4.9   4.9 ]]

    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
    调用ravel()函数将xx和yy的两个矩阵转变成一维数组,由于两个矩阵大小相等,因此两个一维数组大小也相等。np.c_[xx.ravel(), yy.ravel()]是获取矩阵,即:

    xx.ravel() 
    [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
    yy.ravel() 
    [ 1.5  1.5  1.5 ...,  4.9  4.9  4.9]
    np.c_[xx.ravel(), yy.ravel()]
    [[ 3.8   1.5 ]
     [ 3.82  1.5 ]
     [ 3.84  1.5 ]
     ..., 
     [ 8.36  4.9 ]
     [ 8.38  4.9 ]
     [ 8.4   4.9 ]]

    总结下:上述操作是把第一列花萼长度数据按h取等分作为行,并复制多行得到xx网格矩阵;再把第二列花萼宽度数据按h取等分,作为列,并复制多列得到yy网格矩阵;最后将xx和yy矩阵都变成两个一维数组,调用np.c_[]函数组合成一个二维数组进行预测。
    调用predict()函数进行预测,预测结果赋值给Z。即:

    Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
    [1 1 1 ..., 2 2 2]
    size: 39501

    Z = Z.reshape(xx.shape)
    调用reshape()函数修改形状,将其Z转换为两个特征(长度和宽度),则39501个数据转换为171*231的矩阵。Z = Z.reshape(xx.shape)输出如下:

    [[1 1 1 ..., 2 2 2]
     [1 1 1 ..., 2 2 2]
     [0 1 1 ..., 2 2 2]
     ..., 
     [0 0 0 ..., 2 2 2]
     [0 0 0 ..., 2 2 2]
     [0 0 0 ..., 2 2 2]]

    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
    调用pcolormesh()函数将xx、yy两个网格矩阵和对应的预测结果Z绘制在图片上,可以发现输出为三个颜色区块,分布表示分类的三类区域。cmap=plt.cm.Paired表示绘图样式选择Paired主题。输出的区域如下图所示:

     

    plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
    调用scatter()绘制散点图,第一个参数为第一列数据(长度),第二个参数为第二列数据(宽度),第三、四个参数为设置点的颜色为红色,款式为圆圈,最后标记为setosa。

    输出如下图所示,经过逻辑回归后划分为三个区域,左上角部分为红色的圆点,对应setosa鸢尾花;右上角部分为绿色方块,对应virginica鸢尾花;中间下部分为蓝色星形,对应versicolor鸢尾花。散点图为各数据点真实的花类型,划分的三个区域为数据点预测的花类型,预测的分类结果与训练数据的真实结果结果基本一致,部分鸢尾花出现交叉。

     

    回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。本篇文章详细讲解了逻辑回归模型的原理知识,结合Sklearn机器学习库的LogisticRegression算法分析了鸢尾花分类情况。更多知识点希望读者下来后进行拓展,也推荐大学从Sklearn开源知识官网学习最新的实例。

  • 相关阅读:
    【转】编写高质量代码改善C#程序的157个建议——建议70:避免在调用栈较低的位置记录异常
    【转】编写高质量代码改善C#程序的157个建议——建议69:应使用finally避免资源泄漏
    【转】编写高质量代码改善C#程序的157个建议——建议68:从System.Exception或其他常见的基本异常中派生异常
    【转】编写高质量代码改善C#程序的157个建议——建议67:慎用自定义异常
    Arrays数组工具类中存在的坑!
    java.util.ArrayList
    java.util包下面的类---------01---示意图
    elasticsearch从入门到出门-08-Elasticsearch容错机制:master选举,replica容错,数据恢复
    elasticsearch从入门到出门-06-剖析Elasticsearch的基础分布式架构
    CentOS7.1安装 Vsftpd FTP 服务器
  • 原文地址:https://www.cnblogs.com/mandy-study/p/7941365.html
Copyright © 2011-2022 走看看