zoukankan      html  css  js  c++  java
  • 图像分析之阈值与平滑处理

    1.图像阈值


    #### ret, dst = cv2.threshold(src, thresh, maxval, type)

    - src: 输入图,只能输入单通道图像,通常来说为灰度图
    - dst: 输出图
    - thresh: 阈值
    - maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
    - type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

    - cv2.THRESH_BINARY           超过阈值部分取maxval(最大值),否则取0
    - cv2.THRESH_BINARY_INV    THRESH_BINARY的反转
    - cv2.THRESH_TRUNC            大于阈值部分设为阈值,否则不变
    - cv2.THRESH_TOZERO          大于阈值部分不改变,否则设为0
    - cv2.THRESH_TOZERO_INV  THRESH_TOZERO的反转
    import cv2 #opencv读取的格式是BGR
    import numpy as np
    import matplotlib.pyplot as plt#Matplotlib是RGB
    
    img=cv2.imread('cat.jpg')
    img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
    ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
    ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
    ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
    ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
    
    titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
    images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
    
    for i in range(6):
        plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()

    2.平滑处理

    1)均值滤波

    # 均值滤波
    # 简单的平均卷积操作
    img = cv2.imread('lena.jpg')
    blur = cv2.blur(img, (3, 3))
    cv2.imshow('img', img)
    cv2.imshow('blur', blur)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    2)

    # 方框滤波,normalize为TRUE时就和均值滤波一样
    # 基本和均值一样,可以选择归一化,容易越界
    box = cv2.boxFilter(img, -1, (3, 3), normalize=False)
    cv2.imshow('box', box)

    3)

    # 高斯滤波
    # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
    aussian = cv2.GaussianBlur(img, (5, 5), 1)
    cv2.imshow('aussian', aussian)

    4)

    # 中值滤波
    # 相当于用中值代替
    median = cv2.medianBlur(img, 5)  # 中值滤波
    cv2.imshow('median', median)

    3.一次性拼接展示多个图片

    # 展示所有的
    res = np.hstack((blur, aussian, median))
    res2 = np.vstack((blur, aussian, median))
    cv2.imshow('median vs average', res)
    cv2.imshow('median vs average', res2)
     
  • 相关阅读:
    一个多列组合框
    数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历
    数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历
    图结构练习——BFS——从起始点到目标点的最短步数
    图结构练习——BFS——从起始点到目标点的最短步数
    广度优先搜索介绍
    广度优先搜索介绍
    数据结构实验之二叉树一:树的同构
    数据结构实验之二叉树一:树的同构
    对代码不满足,是任何真正有天才的程序员的根本特征。
  • 原文地址:https://www.cnblogs.com/mango1997/p/13984946.html
Copyright © 2011-2022 走看看