zoukankan      html  css  js  c++  java
  • 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树

    解题思路

    (G(x)) 为关于可选大小集合的生成函数,即

    [G(x)=sum[iin c ] x^i ]

    (F(x))(n) 项的系数为为权值为 (n) 的二叉树的方案数,显然有

    [F(x)=F(x)^2G(x)+1\ F^2(x)G(x)-F(x)+1=0 \ F(x)=dfrac{1pmsqrt{1-4G(x)}}{2G(x)} ]

    (x o 0) 时,(F(x)) 的值为 (1) ,当取加号的时候发现

    [lim_{x o0} F(x)=dfrac{1}{G(x)} \ =infty ]

    所以

    [F(x)=dfrac{1-sqrt{1-4G(x)}}{2G(x)} ]

    由于 (2G(x)) 的常数项为 (0) 不存在逆元,所以要稍作一些变化

    [F(x)=dfrac{4G(x)}{2G(x)(1+sqrt{1-4G(x)})} \ =dfrac{2}{1+sqrt{1-4G(x)}} ]

    (sqrt{1-4G(x)}) 的常数项为 (1) ,一遍开根一遍求逆就好了,复杂度 (mathcal O(nlog n)) ,下面代码拖了多项式板子所以有用不到的部分。

    code

    /*program by mangoyang*/ 
    #include<bits/stdc++.h>
    #define inf (0x7f7f7f7f)
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    typedef long long ll;
    using namespace std;
    template <class T>
    inline void read(T &x){
        int ch = 0, f = 0; x = 0;
        for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
        for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
        if(f) x = -x;
    }
    const int N = (1 << 22) + 5, P = 998244353, G = 3;
    namespace poly{
    	int rev[N], W[N], invW[N], len, lg;	
    	inline int Pow(int a, int b){
    		int ans = 1;
    		for(; b; b >>= 1, a = 1ll * a * a % P)
    			if(b & 1) ans = 1ll * ans * a % P;
    		return ans;
    	}
    	inline void init(){
    		for(int k = 2; k < N; k <<= 1)
    			W[k] = Pow(G, (P - 1) / k), invW[k] = Pow(W[k], P - 2);
    	}
    	inline void timesinit(int lenth){
    		for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
    		for(int i = 0; i < len; i++)
    			rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
    	}
    	inline void DFT(int *a, int sgn){
    		for(int i = 0; i < len; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
    		for(int k = 2; k <= len; k <<= 1){
    			int w = ~sgn ? W[k] : invW[k];
    			for(int i = 0; i < len; i += k){
    				int now = 1;
    				for(int j = i; j < i + (k >> 1); j++){
    					int x = a[j], y = 1ll * a[j+(k>>1)] * now % P;
    					a[j] = (x + y) % P, a[j+(k>>1)] = (x - y + P) % P;
    					now = 1ll * now * w % P;
    				}
    			}
    		}
    		if(sgn == -1){
    			int Inv = Pow(len, P - 2);
    			for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * Inv % P;
    		}
    	}
    	inline void getinv(int *a, int *b, int n){
    		static int tmp[N];
    		if(n == 1) return (void) (b[0] = Pow(a[0], P - 2));
    		getinv(a, b, (n + 1) / 2);
    		timesinit(n * 2 - 1);
    		for(int i = 0; i < len; i++) tmp[i] = i < n ? a[i] : 0;
    		DFT(tmp, 1), DFT(b, 1);
    		for(int i = 0; i < len; i++) 
    			b[i] = 1ll * (2 - 1ll * tmp[i] * b[i] % P + P) % P * b[i] % P;
    		DFT(b, -1);
    		for(int i = n; i < len; i++) b[i] = 0;
    		for(int i = 0; i < len; i++) tmp[i] = 0;
    	}
    	inline void getsqrt(int *a, int *b, int n){
    		static int tmp1[N], tmp2[N];
    		if(n == 1) return (void) (b[0] = 1);
    		getsqrt(a, b, (n + 1) / 2);
    		for(int i = 0; i < n; i++) tmp1[i] = a[i];
    		getinv(b, tmp2, n), timesinit(n * 2 - 1);
    		DFT(tmp1, 1), DFT(tmp2, 1);
    		for(int i = 0; i < len; i++) tmp1[i] = 1ll * tmp1[i] * tmp2[i] % P;
    		DFT(tmp1, -1);
    		for(int i = 0; i < len; i++) 
    			b[i] = 1ll * (b[i] + tmp1[i]) % P * Pow(2, P - 2) % P; 
    		for(int i = n; i < len; i++) b[i] = 0;
    		for(int i = 0; i < len; i++) tmp1[i] = tmp2[i] = 0;
    	}
    	inline void getln(int *a, int *b, int n){
    		static int tmp[N];
    		getinv(a, b, n), timesinit(n * 2 - 1);
    		for(int i = 1; i < n; i++) tmp[i-1] = 1ll * a[i] * i % P;
    		DFT(tmp, 1), DFT(b, 1);
    		for(int i = 0; i < len; i++) b[i] = 1ll * tmp[i] * b[i] % P;
    		DFT(b, -1);
    		for(int i = len - 1; i; i--) b[i] = 1ll * b[i-1] * Pow(i, P - 2) % P;
    		b[0] = 0;
    		for(int i = n; i < len; i++) b[i] = 0;
    		for(int i = 0; i < len; i++) tmp[i] = 0;
    	}
    	inline void getexp(int *a, int *b, int n){
    		static int tmp[N]; 
    		if(n == 1) return (void) (b[0] = 1);
    		getexp(a, b, (n + 1) / 2);
    		getln(b, tmp, n), timesinit(n * 2 - 1);
    		for(int i = 0; i < n; i++) tmp[i] = (!i - tmp[i] + a[i] + P) % P;
    		DFT(tmp, 1), DFT(b, 1);
    		for(int i = 0; i < len; i++) b[i] = 1ll * b[i] * tmp[i] % P;
    		DFT(b, -1);
    		for(int i = n; i < len; i++) b[i] = 0;
    		for(int i = 0; i < len; i++) tmp[i] = 0;
    	}
    	inline void power(int *a, int *b, int n, int m, ll k){
    		static int tmp[N];
    		for(int i = 0; i < m; i++) b[i] = 0;
    		int fir = -1;
    		for(int i = 0; i < n; i++) if(a[i]){ fir = i; break; }
    		if(fir && k >= m) return;
    		if(fir == -1 || 1ll * fir * k >= m) return;
    		for(int i = fir; i < n; i++) b[i-fir] = a[i];
    		for(int i = 0; i < n - fir; i++) 
    			b[i] = 1ll * b[i] * Pow(a[fir], P - 2) % P;
    		getln(b, tmp, m);
    		for(int i = 0; i < m; i++) 
    			b[i] = 1ll * tmp[i] * (k % P) % P, tmp[i] = 0;
    		getexp(b, tmp, m);
    		for(int i = m; i >= fir * k; i--) 
    			b[i] = 1ll * tmp[i-fir*k] * Pow(a[fir], k % (P - 1)) % P;
    		for(int i = 0; i < fir * k; i++) b[i] = 0;
    		for(int i = 0; i < m; i++) tmp[i] = 0;
    	}
    }
    using poly::Pow;
    using poly::DFT;
    using poly::timesinit;
    int a[N], b[N], c[N], n, m;
    int main(){
    	poly::init(), read(n), read(m), m++;
    	for(int i = 1, x; i <= n; i++) 
    		read(x), a[x] = P - 4;
    	a[0]++, poly::getsqrt(a, b, m); 
    	b[0] = (b[0] + 1) % P;
    	poly::getinv(b, c, m);
    	for(int i = 1; i < m; i++) printf("%lld
    ", 2ll * c[i] % P);
    	return 0;
    }
    
  • 相关阅读:
    曾今的代码系列——获取当天最大流水号存储过程
    曾今的代码系列——生产者消费者模式
    利用Microsoft.VisualBasic中TextFieldParser解析器把CSV格式倒入数据库
    曾今的代码系列——自己的分页控件+存储过程实现分页
    ASP.NET那点不为人知的事(四)
    SharePoint下用C#代码上传文档至文档库的子文件夹中
    Entity Framework 4 in Action读书笔记——第四章:使用LINQ to Entities查询:使用函数
    Entity Framework 4 in Action读书笔记——第四章:使用LINQ to Entities查询:预先加载和延迟加载
    这几天Colorbox让我寝食难安
    使用ASP.NET MVC3+EF+Jquery制作文字直播系统(四)——完成篇
  • 原文地址:https://www.cnblogs.com/mangoyang/p/10691855.html
Copyright © 2011-2022 走看看