zoukankan      html  css  js  c++  java
  • BERT实现QA中的问句语义相似度计算

    1. BERT 语义相似度

    BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

    有一个这样的场景,QA对话系统,希望能够在问答库中找到与用户问题相似的句子对,然后把答案返回给用户。这篇就是要解决这个问题的。

    关于 BERT 的原理知识请访问: http://mantchs.com/2019/09/28/NLP/BERT/

    下面介绍一个封装好的 BERT 工具,利用该工具能够快速的得到词向量表示。该工具的名称叫做: bert-as-service,从名称就可以看出作者是把 BERT 作为一种服务了,只要调用该服务就能够得到我们想要的向量表示,得到向量以后,就可以通过余弦相似度的计算公式计算向量之间的相似度。

    bert-as-service 源码详见: https://github.com/hanxiao/bert-as-service

    bert-as-service 使用文档: https://bert-as-service.readthedocs.io/en/latest/index.html

    步骤如下:

    1. 安装 bert-as-service 的服务端和客户端。
    2. 预训练 BERT 模型。
    3. 客户端编写代码请求服务端得到句向量。
    4. 句子与句子向量之间计算相似度,并返回 top_k 个结果。

    2. 安装 bert-as-service

    1. 环境要求:

      Python版本 >= 3.5,Tensorflow版本 >= 1.10

      (本人环境,Python = 3.7 Tensorflow = 1.13.1)

    2. 安装服务端和客户端

      pip install -U bert-serving-server bert-serving-client
      

    3. 启动 BERT 服务

    1. 下载预训练模型

      Google AI发布的经过预训练的BERT模型。这里我们下载 BERT-Base, Chinese,12-layer, 768-hidden, 12-heads, 110M parameters。

      链接:

      https://pan.baidu.com/s/1jJudiTj__vbFb0WkEQUxWw

      密码:mf4p

    2. 启动服务

      解压缩后,运行如下命令进行启动,目录换成解压后的路径。(-num_worker指定使用多少个CPU)

      bert-serving-start -model_dir /Users/mantch/Downloads/chinese_L-12_H-768_A-12 -num_worker=4
      

      运行后会看到如下结果:

          http_max_connect = 10
                 http_port = None
              mask_cls_sep = False
            max_batch_size = 256
               max_seq_len = 25
                 model_dir = /Users/mantch/Downloads/chinese_L-12_H-768_A-12
      no_position_embeddings = False
          no_special_token = False
                num_worker = 4
             pooling_layer = [-2]
          pooling_strategy = REDUCE_MEAN
                      port = 5555
                  port_out = 5556
             prefetch_size = 10
       priority_batch_size = 16
      show_tokens_to_client = False
           tuned_model_dir = None
                   verbose = False
                       xla = False
      

      其中就已经显示了port = 5555,port_out = 5556 等端口号信息。

      如果显示以下信息就表示可以使用了

      I:WORKER-0:[__i:gen:559]:ready and listening!
      I:WORKER-3:[__i:gen:559]:ready and listening!
      I:WORKER-1:[__i:gen:559]:ready and listening!
      I:WORKER-2:[__i:gen:559]:ready and listening!
      I:VENTILATOR:[__i:_ru:164]:all set, ready to serve request!
      

    4. 相似度计算

    1. 数据集

      我们使用蚂蚁金服语义相似度比赛的一份数据集,该数据集分为 4 列,第一列是索引,第二列和第三列是句子,第四列中的 1 表示这两个句子是同义句,否则表示为 0。

      数据集下载地址: https://www.lanzous.com/ia9dg8b

    2. 编写代码

      import pandas as pd
      import numpy as np
      from bert_serving.client import BertClient
      from termcolor import colored
      
      num = 100     # 采样数
      topk = 5     # 返回 topk 个结果
      
      # 读取数据集
      sentence_csv = pd.read_csv('atec_nlp_sim_train_all.csv', sep='	', names=['idx', 's1', 's2', 'label'])
      sentences = sentence_csv['s1'].tolist()[:num]
      print('%d questions loaded, avg.len %d' % (len(sentences), np.mean([len(d) for d in sentences])))
      
      
      with BertClient(port=5555, port_out=5556) as bc:
      
          # 获取句子向量编码
          doc_vecs = bc.encode(sentences)
      
          while True:
              query = input(colored('your question:', 'green'))
              query_vec = bc.encode([query])[0]
      
              # 余弦相似度 分数计算。
              # np.linalg.norm 是求取向量的二范数,也就是向量长度。
              score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
              
              '''
              		argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引)
              
                  [::-1]取从后向前(相反)的元素, 例如[ 1 2 3 4 5 ]
                  则输出为[ 5 4 3 2 1 ]
              '''
              topk_idx = np.argsort(score)[::-1][:topk]
              print('top %d questions similar to "%s"' % (topk, colored(query, 'green')))
              for idx in topk_idx:
                  print('> %s	%s' % (colored('%.1f' % score[idx], 'cyan'), colored(sentences[idx], 'yellow')))
      

  • 相关阅读:
    VS2010 LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 的解决方法
    Navicat Premium11.0.16 for mac 中文破解版
    angular input输入框中使用filter格式化日期
    Mac下搭建Eclipse Android开发环境
    mac下修改.bash_profile立即生效的方法
    Ionic ngMessage 表单验证
    mongodb授权登录
    Ionic开发之条形码扫描
    ionic 到真相后$http.get()无法请求,导致空白的情况,如何解决
    Xcode 7中http通信出现如下错误:Application Transport Security has blocked a cleartext HTTP (http://) resource load since it is insecure. Temporary exceptions can be configured via your app's Info.plist file.
  • 原文地址:https://www.cnblogs.com/mantch/p/12494597.html
Copyright © 2011-2022 走看看