package window.non_keyed
import org.apache.flink.api.common.functions.FlatMapFunction
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.ProcessAllWindowFunction
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector
import org.apache.flink.api.scala._
import scala.collection.mutable
/**
* @author: create by maoxiangyi
* @version: v1.0
* @description: window
* @date:2019 /6/4
*/
object ProcessAllWindowWordCount {
def main(args: Array[String]): Unit = {
//设置环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironment()
//设置数据源
env.addSource(new SourceFunction[String] {
override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
while (true) {
ctx.collect("hello hadoop hello storm hello spark")
Thread.sleep(1000)
}
}
override def cancel(): Unit = {}
})
//计算逻辑
.flatMap(_.split(" "))
.map((_, 1))
.timeWindowAll(Time.seconds(10), Time.seconds(10))
.process(new ProcessAllWindowFunction[(String, Int), mutable.Map[String, Int], TimeWindow] {
override def process(context: Context, elements: Iterable[(String, Int)], out: Collector[mutable.Map[String, Int]]): Unit = {
val wordCountMap = mutable.Map[String, Int]()
elements.foreach(kv => {
wordCountMap.put(kv._1, wordCountMap.get(kv._1).getOrElse(0) + kv._2)
})
out.collect(wordCountMap)
}
}).flatMap(new FlatMapFunction[mutable.Map[String, Int], (String, Int)] {
override def flatMap(value: mutable.Map[String, Int], out: Collector[(String, Int)]): Unit = {
value.foreach(out.collect(_))
}
})
.print()
//提交任务
env.execute("word count")
}
}