Permutations II (M)
题目
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
Example:
Input: [1,1,2]
Output:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
题意
求给定数组的全排列,注意数组中有重复元素。
思路
与 46. Permutations 相比,多了重复元素,只要在46解法基础上加上相应的限制即可。
- 回溯法:
- 使用hash:用一张hash表记录整个搜索中对应下标的数是否已被使用,每一层递归中再用一张hash表记录当前递归层次中已经插入过(又移除)的数字,每次操作都往已有序列后插入一个未被使用的数(既是整个搜索中未被使用,也是当前递归中未被使用),更新hash,递归,再移除改数,更新hash。
- 不使用hash:对于结果序列中的每一个位置index,它可能存放的数为nums从index到最后一个位置nums.length-1中的任意一个数,但要保证每次存放的都是不同的数。所以每次操作都从这(nums.length - index)个数中选出一个,并判断该数是否已经存放过,若没有则放到当前空位,再对右边的空位进行递归操作。
- 结合 31. Next Permutation 来实现全排列。
代码实现
Java
回溯法无hash
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> ans = new ArrayList<>();
permute(nums, 0, ans);
return ans;
}
private void permute(int[] nums, int index, List<List<Integer>> ans) {
if (index == nums.length - 1) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
list.add(nums[i]);
}
ans.add(list);
return;
}
for (int i = index; i < nums.length; i++) {
// 每次都要判断该数是否已经使用过
boolean flag = false;
for (int j = index; j < i; j++) {
if (nums[i] == nums[j]) {
flag = true;
break;
}
}
if (flag) {
continue;
}
swap(nums, index, i);
permute(nums, index + 1, ans);
swap(nums, index, i);
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
回溯法hash
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> ans = new ArrayList<>();
permute(nums, new boolean[nums.length], new ArrayList<>(), ans);
return ans;
}
private void permute(int[] nums, boolean[] hash, List<Integer> list, List<List<Integer>> ans) {
if (list.size() == nums.length) {
ans.add(new ArrayList<>(list));
}
// 当前递归中也要用一张hash表记录已经插入过的数字
Set<Integer> used = new HashSet<>();
for (int i = 0; i < nums.length; i++) {
if (!hash[i] && !used.contains(nums[i])) {
used.add(nums[i]);
list.add(nums[i]);
hash[i] = true;
permute(nums, hash, list, ans);
hash[i] = false;
list.remove(list.size() - 1);
}
}
}
}
nextPermutation
class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> ans = new ArrayList<>();
Arrays.sort(nums);
while (true) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
list.add(nums[i]);
}
ans.add(list);
if (hasNextPermutation(nums)) {
nextPermutation(nums);
} else {
break;
}
}
return ans;
}
// 根据当前排列计算下一个排列
private void nextPermutation(int[] nums) {
int i = nums.length - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
i--;
}
int j = nums.length - 1;
while (nums[j] <= nums[i]) {
j--;
}
swap(nums, i, j);
reverse(nums, i + 1, nums.length - 1);
}
// 判断是否存在下一个排列,即判断是否已经是完全逆序数列
private boolean hasNextPermutation(int[] nums) {
int i = nums.length - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
i--;
}
return i >= 0;
}
private void reverse(int[] nums, int left, int right) {
while (left < right) {
swap(nums, left++, right--);
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
JavaScript
回溯法无hash
/**
* @param {number[]} nums
* @return {number[][]}
*/
var permuteUnique = function (nums) {
let lists = []
dfs(nums, 0, lists)
return lists
}
let dfs = function (nums, index, lists) {
if (index === nums.length) {
lists.push([...nums])
return
}
let used = new Set()
for (let i = index; i < nums.length; i++) {
if (!used.has(nums[i])) {
used.add(nums[i]);
[nums[index], nums[i]] = [nums[i], nums[index]]
dfs(nums, index + 1, lists);
[nums[index], nums[i]] = [nums[i], nums[index]]
}
}
}
回溯法hash
/**
* @param {number[]} nums
* @return {number[][]}
*/
var permuteUnique = function (nums) {
let lists = []
dfs(nums, 0, [], lists, new Set())
return lists
}
let dfs = function (nums, index, list, lists, record) {
if (index === nums.length) {
lists.push([...list])
return
}
let used = new Set()
for (let i = 0; i < nums.length; i++) {
if (!record.has(i) && !used.has(nums[i])) {
used.add(nums[i])
record.add(i)
list.push(nums[i])
dfs(nums, index + 1, list, lists, record)
list.pop()
record.delete(i)
}
}
}