zoukankan      html  css  js  c++  java
  • 0062. Unique Paths (M)

    Unique Paths (M)

    题目

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    Above is a 7 x 3 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    Example 1:

    Input: m = 3, n = 2
    Output: 3
    Explanation:
    From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
    1. Right -> Right -> Down
    2. Right -> Down -> Right
    3. Down -> Right -> Right
    

    Example 2:

    Input: m = 7, n = 3
    Output: 28
    

    题意

    在矩形中找到一条路径,起点为左上顶点,终点为右下顶点,路径中只能向右或向下走,要求统计不同路径的个数。

    思路

    组合数:因为每次只能向右或向下走,所以符合条件的路径的长度必然是 m+n-2,其中有 m-1 个点是向右走,n-1 个点是向下走,问题就转化为了在 m+n-2 个点中找出 m-1 个点(或找出 n-1 个点,都一样),求(C_{m+n-2}^{m-1})的值。
    组合数求值可以用公式:(C_n^m=frac{n!}{m!(n-m)!}),也可以用递推公式计算:(C_n^m=C_{n-1}^{m-1}+C_{n-1}^m)

    动态规划:dp[i][j]记录可以到达位置(i, j)的路径的数目,因为(i, j)只可能从(i, j-1)向右走到达,或者从(i-1, j)向下走到达,所以有 (dp[i][j]=dp[i][j-1]+dp[i-1][j])
    注意到dp[i][j]只与左边和上边的dp有关,且我们的目标只是为了得到最后一行最后一列的dp,所以可以用滚动数组对上述过程进行空间优化,无需使用二维数组。


    代码实现

    Java

    组合数

    public int uniquePaths(int m, int n) {
            return calculate(m + n - 2, m - 1);
        }
    
        private int calculate(int n, int m) {
            double ans = 1.0;
            while (m >= 1) {
                ans *= 1.0 * n-- / m--;
            }
            return (int) Math.round(ans);
        }
    

    动态规划

    class Solution {
        public int uniquePaths(int m, int n) {
            int[][] dp = new int[n][m];
            dp[0][0] = 1;
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    if (i != 0 || j != 0) {
                        dp[i][j] = findDP(dp, i - 1, j) + findDP(dp, i, j - 1);
                    }
                }
            }
            return dp[n - 1][m - 1];
        }
    
        private int findDP(int[][] dp, int i, int j) {
            if (i < 0 || j < 0) {
                return 0;
            }
            return dp[i][j];
        }
    }
    

    滚动数组优化

    class Solution {
        public int uniquePaths(int m, int n) {
            int[] dp = new int[m];
            dp[0] = 1;
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    dp[j] = dp[j] + (j > 0 ? dp[j - 1] : 0);
                }
            }
            return dp[m - 1];
        }
    }
    

    JavaScript

    /**
     * @param {number} m
     * @param {number} n
     * @return {number}
     */
    var uniquePaths = function (m, n) {
      let scroll = new Array(m).fill(1)
      for (let i = 1; i < n; i++) {
        for (let j = 0; j < m; j++) {
          scroll[j] = j === 0 ? scroll[j] : scroll[j] + scroll[j - 1]
        }
      }
      return scroll[m - 1]
    }
    
  • 相关阅读:
    MyBatis入门基础
    复制复杂链表
    二叉树中和为某一值的所有路径
    树的层次遍历
    Statement, PreparedStatement和CallableStatement的区别
    JSP有哪些动作?
    latex 输入矩阵
    Struts简单入门实例
    在Eclipse里面配置Struts2
    Windows使用Github
  • 原文地址:https://www.cnblogs.com/mapoos/p/13296867.html
Copyright © 2011-2022 走看看