Jump Game IV (H)
题目
Given an array of integers arr
, you are initially positioned at the first index of the array.
In one step you can jump from index i
to index:
i + 1
where:i + 1 < arr.length
.i - 1
where:i - 1 >= 0
.j
where:arr[i] == arr[j]
andi != j
.
Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You don't need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Example 4:
Input: arr = [6,1,9]
Output: 2
Example 5:
Input: arr = [11,22,7,7,7,7,7,7,7,22,13]
Output: 3
Constraints:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
题意
给定一个数组,对应其中一个下标i,下一步可以到达的下标为i-1、i+1、所有满足arr[i]==arr[j]的j。要求能从0到达最后一个下标的最小步数。
思路
按照提示,将数组重构成一张表,结点的值是数组中的下标,且与前后两个下标对应的结点、所有与该结点在数组中对应的值相等的结点相连。用BFS找最短距离。
代码实现
Java
class Solution {
public int minJumps(int[] arr) {
if (arr.length == 1) {
return 0;
}
Map<Integer, List<Integer>> inverse = new HashMap<>();
for (int i = 0; i < arr.length; i++) {
inverse.putIfAbsent(arr[i], new ArrayList<>());
inverse.get(arr[i]).add(i);
}
int steps = 0;
Queue<Integer> q = new LinkedList<>();
boolean[] visited = new boolean[arr.length];
visited[0] = true;
q.offer(0);
while (!q.isEmpty()) {
int size = q.size();
for (int i = 0; i < size; i++) {
int cur = q.poll();
for (int j = inverse.get(arr[cur]).size() - 1; j >= 0; j--) {
int next = inverse.get(arr[cur]).get(j);
if (next != cur && !visited[next]) {
if (next == arr.length - 1) return steps + 1;
q.offer(next);
visited[next] = true;
}
}
if (cur > 0 && !visited[cur - 1]) {
q.offer(cur - 1);
visited[cur - 1] = true;
}
if (cur < arr.length - 1 && !visited[cur + 1]) {
if (cur + 1 == arr.length - 1) return steps + 1;
q.offer(cur + 1);
visited[cur + 1] = true;
}
}
steps++;
}
return -1;
}
}