zoukankan      html  css  js  c++  java
  • 0109. Convert Sorted List to Binary Search Tree (M)

    Convert Sorted List to Binary Search Tree (M)

    题目

    Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

    For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

    Example:

    Given the sorted linked list: [-10,-3,0,5,9],
    
    One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
    
          0
         / 
       -3   9
       /   /
     -10  5
    

    题意

    将一个有序链表转换成左右子树高度差不超过1的平衡二叉查找树。

    思路

    比较简单的方法是,将链表中的值存入数组中,接下来与 108. Convert Sorted Array to Binary Search Tree 一样进行二分递归。

    直接用快慢指针可以一次遍历找到链表中的中位数:初始时快慢指针同时指向头结点,每次移动慢指针走1步、快指针走2步,当快指针无法继续走时慢指针正好指在中位数处。每次找到当前链表的中位数作为当前子树的根,以中位数为中心划分出左右链表,递归生成左右子树。

    模拟中序遍历:很玄妙,利用了二叉查找树的中序遍历是递增序列的性质,具体还是看官方解答 - Approach 3: Inorder Simulation


    代码实现

    Java

    快慢指针

    class Solution {
        public TreeNode sortedListToBST(ListNode head) {
            if (head == null) {
                return null;
            }
    
            ListNode mid = findMid(head);
    
            TreeNode x = new TreeNode(mid.val);
    
    
            x.left = mid == head ? null : sortedListToBST(head);
            x.right = sortedListToBST(mid.next);
    
            return x;
        }
    
        private ListNode findMid(ListNode head) {
            ListNode pre = null;
            ListNode slow = head, fast = head;
    
            while (fast.next != null && fast.next.next != null) {
                pre = slow;
                slow = slow.next;
                fast = fast.next.next;
            }
    
            if (pre != null) {
                pre.next = null;
            }
    
            return slow;
        }
    }
    

    模拟中序遍历

    class Solution {
        private ListNode head;
    
        public TreeNode sortedListToBST(ListNode head) {
            this.head = head;
            
            // 求出链表长度
            int len = 0;
            ListNode p = head;
            while (p != null) {
                len++;
                p = p.next;
            }
    
            return sortedListToBST(0, len - 1);
        }
    
        private TreeNode sortedListToBST(int left, int right) {
            if (left > right) {
                return null;
            }
    
            int mid = (left + right) / 2;
    
            TreeNode leftChild = sortedListToBST(left, mid - 1);
            TreeNode root = new TreeNode(head.val);
            root.left = leftChild;
            head = head.next;
            root.right = sortedListToBST(mid + 1, right);
    
            return root;
        }
    }
    

    JavaScript

    /**
     * @param {ListNode} head
     * @return {TreeNode}
     */
    var sortedListToBST = function (head) {
      const nums = []
      while (head) {
        nums.push(head.val)
        head = head.next
      }
    
      return dfs(nums, 0, nums.length - 1)
    }
    
    var dfs = function (nums, left, right) {
      if (left > right) return null
    
      const mid = Math.trunc((right - left) / 2) + left
      const root = new TreeNode(nums[mid])
      root.left = dfs(nums, left, mid - 1)
      root.right = dfs(nums, mid + 1, right)
      return root
    }
    
  • 相关阅读:
    C++多态深入分析!
    字符编码总结
    算法:并查集
    树的非递归遍历:一种很好的算法
    算法:快速排序
    算法:堆排序
    字符串匹配:KMP算法, Boyer-Moore算法理解与总结
    shodan搜索
    google hacking 语法
    FOFA的搜索语句
  • 原文地址:https://www.cnblogs.com/mapoos/p/14735486.html
Copyright © 2011-2022 走看看