zoukankan      html  css  js  c++  java
  • 汉诺塔问题算法介绍

    汉诺塔问题算法介绍 - marsggbo - 火星教教主
     
    其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n – 1(有兴趣的可以自己证明试试看)。后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
    若n为奇数,按顺时针方向依次摆放 A C B。
    ⑴按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
    ⑵接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
    ⑶反复进行⑴⑵操作,最后就能按规定完成汉诺塔的移动。
    所以结果非常简单,就是按照移动规则向一个方向移动金片:
    如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C

    #Python 代码实现

    def move(n, a, b, c):
    if n==1:
    print a,'-->',c
    return
    else:
    move(n-1,a,c,b)
    print a,'-->',c
    move(n-1,b,a,c)
    return
    n=int(raw_input('请输入圆盘的个数:'))
    move(n, 'A', 'B', 'C')



  • 相关阅读:
    刨析js代码执行机制
    H5离线缓存基础系列
    meta 详解
    如何成长为一名合格的web架构师?
    整理的互联网公司面试趋势
    http协议
    前端现在到底需要什么样的人才
    webpack 4.0 版本的简单使用
    vue的懒加载如何实现?
    Runtime的几个小例子(含Demo)
  • 原文地址:https://www.cnblogs.com/marsggbo/p/6622959.html
Copyright © 2011-2022 走看看