zoukankan      html  css  js  c++  java
  • python 求相关系数

    两组序列数据,求两者的线性相关系数。

    1:使用numpy

    import random
    import numpy as np
    a = [random.randint(0, 10) for t in range(20)]
    b = [random.randint(0, 10) for t in range(20)]
    # 先构造一个矩阵
    ab = np.array([a, b])
    # 计算协方差矩阵
    print(np.cov(ab))
    print(np.corrcoef(ab))
    

    2:使用pandas

    import pandas as pd
    # 使用 pandas 计算协方差、相关系数
    # 使用 DataFrame 作为数据结构,为方便计算,我们会将 ab 矩阵转置
    dfab = pd.DataFrame(ab.T, columns=['A', 'B'])
    # A B 协方差
    print(dfab.A.cov(dfab.B))
    # A B 相关系数
    print(dfab.A.corr(dfab.B))
    

    3:使用原生函数

    import random
    import math
    a = [random.randint(0, 10) for t in range(20)]
    b = [random.randint(0, 10) for t in range(20)]
    
    #计算平均值
    def mean(x):
      return sum(x) / len(x)
    
    # 计算每一项数据与均值的差
    def de_mean(x):
      x_bar = mean(x)
      return [x_i - x_bar for x_i in x]
    
    # 辅助计算函数 dot product 、sum_of_squares
    def dot(v, w):
      return sum(v_i * w_i for v_i, w_i in zip(v, w))
    
    def sum_of_squares(v):
      return dot(v, v)
    
    # 方差
    def variance(x):
      n = len(x)
      deviations = de_mean(x)
      return sum_of_squares(deviations) / (n - 1)
    
    # 标准差
    def standard_deviation(x):
      return math.sqrt(variance(x))
    
    # 协方差
    def covariance(x, y):
      n = len(x)
      return dot(de_mean(x), de_mean(y)) / (n -1)
    
    # 相关系数
    def correlation(x, y):
      stdev_x = standard_deviation(x)
      stdev_y = standard_deviation(y)
      if stdev_x > 0 and stdev_y > 0:
        return covariance(x, y) / stdev_x / stdev_y
      else:
        return 0
    
    print(a)
    print(b)
    print(standard_deviation(a))
    print(standard_deviation(b))
    print(correlation(a,b))
    

    4:使用R,spss,excel

     

  • 相关阅读:
    websocket
    svg vs canvas
    nw
    web sql
    web worker
    【转载】磁盘阵列详解
    【识记】开源软件系列
    【转载】从1.5K到18K 一个程序员的5年成长之路
    SQL中in和not in
    SQL Server select count(distinct *)
  • 原文地址:https://www.cnblogs.com/marszhw/p/12175454.html
Copyright © 2011-2022 走看看