zoukankan      html  css  js  c++  java
  • 点积与叉积

    向量是由n个实数组成的一个n行1列(n1)或一个1行n列(1n)的有序数组;

    向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。

    点乘公式

    对于向量a和向量b:


    a和b的点积公式为:

    要求一维向量a和向量b的行列数相同。

    点乘几何意义

    点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:

    推导过程如下,首先看一下向量组成:

    定义向量:

    根据三角形余弦定理有:

    根据关系c=a-b(a、b、c均为向量)有:

    即:

    向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:

    根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:

    a·b>0 方向基本相同,夹角在0°到90°之间

    a·b=0 正交,相互垂直

    a·b<0 方向基本相反,夹角在90°到180°之间

    叉乘公式

    两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。

    对于向量a和向量b:

    a和b的叉乘公式为:

    其中:

    根据i、j、k间关系,有:

    叉乘几何意义

    在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。

    在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

    在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。

  • 相关阅读:
    好玩的spring boot banner 图
    数据结构和算法二(数组)
    数据结构与算法三(链表)
    数据结构和算法一(基础知识)
    jenkins 部署node应用
    Docker-compose 安装Jenkins
    Docker 网络模式
    exe4j 转jar
    c#索引器的简单用法
    Adapter模式
  • 原文地址:https://www.cnblogs.com/martian148/p/13539713.html
Copyright © 2011-2022 走看看