zoukankan      html  css  js  c++  java
  • CodeForces 414B Mashmokh and ACM(dp)

    B. Mashmokh and ACM
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

    A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all i (1 ≤ i ≤ l - 1).

    Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).

    Input

    The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

    Output

    Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

    Examples
    Input
    Copy
    3 2
    Output
    Copy
    5
    Input
    Copy
    6 4
    Output
    Copy
    39
    Input
    Copy
    2 1
    Output
    Copy
    2
    Note

    In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

    题意:给你1~n之间的数,让你组成一个长度为k序列,使得后一个的数mod前一个数为0.

    思路:后一个数只与前一个数有关,设dp[i][j]表示长度为i的序列中最后一个数字为j,则dp[i][l] = dp[i][l] + dp[i-1][j],其中l%j == 0,l是j的倍数;

     1 #include <bits/stdc++.h>
     2 #define int long long
     3 #define rad rand()%mod+1
     4 using namespace std;
     5 const int maxn = 1e6+5;
     6 const int maxm = 2e3+5;
     7 const int mod = 1e9+7;
     8 int dp[maxm][maxm];
     9 signed main()
    10 {
    11     int n, k;
    12     while(~scanf("%lld %lld", &n, &k))
    13     {
    14         memset(dp, 0, sizeof dp);
    15         for(int i=1; i<=n; i++)
    16             dp[1][i] = 1;
    17         for(int i=1; i<=k; i++)
    18         {
    19             for(int j=1; j<=n; j++)
    20             {
    21                 for(int l=j; l<=n; l += j)
    22                     dp[i][l] = (dp[i][l] + dp[i-1][j]) % mod;
    23             }
    24         }
    25         int ans = 0;
    26         for(int i=1; i<=n; i++)
    27         {
    28             ans += dp[k][i];
    29             ans %= mod;
    30         }
    31         printf("%lld
    ", ans);
    32     }
    33     return 0;
    34 }
    35 /***
    36 
    37 
    38 ***/
  • 相关阅读:
    poj 3744 Scout YYF I (矩阵快速幂 优化 概率dp)
    Codeforces Round #272 (Div. 2) D. Dreamoon and Sets (思维 数学 规律)
    Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)
    hdu 5067 Harry And Dig Machine (状态压缩dp)
    hdu 4810 Wall Painting (组合数学+二进制)
    hdu 4856 Tunnels (bfs + 状压dp)
    tc srm 636 div2 500
    poj 2096 Collecting Bugs (概率dp 天数期望)
    ABC182 F Valid payments
    AT2699 [ARC081D] Flip and Rectangles
  • 原文地址:https://www.cnblogs.com/mashen/p/11347095.html
Copyright © 2011-2022 走看看