zoukankan      html  css  js  c++  java
  • Coursera, Deep Learning 5, Sequence Models, week3, Sequence models & Attention mechanism

    Sequence to Sequence models

    basic sequence-to-sequence model:

      

     basic image-to-sequence or called image captioning model:

      

    but there are some differences between how you write a model like this to generate a sequence, compared to how you were synthesizing novel text  using a language model. One of the key differences is,you don't want a randomly chosen translation,you maybe want the most likely translation,or you don't want a randomly chosen caption, maybe not,but you might want the best caption and most likely caption.So let's see in the next video how you go about generating that.

     

    Picking the most likely sentence

      

    找出最大可能性的P(y|x),最常用的算法是beam search.

      

    在介绍 beam search 之前,先了解一下 greedy search 已经为什么不用 greedy search?

    greedy search 的意思是,在已知一个值word的情况下,求下一个值word的最可能的情况,以此类推。。。 下图是一个很好的例子说明 greedy search 不适用的情况, 就不如求核能的 y^ 的组合的概率 p(y^1, y^2, ...|x) 然后找出最大概率,当然这样也有问题,就是比如说 10 个word 的输出,在一个 10,000 大的corpus 里就有 10,000 10 种组合情况,需要诉诸于更好的算法,且继续往下看

      

    转载请注明出处 http://www.cnblogs.com/mashuai-191/
  • 相关阅读:
    Button 使用Command 按钮置灰未更新
    C# TextBox 焦点
    MultiTigger 绑定异常处理
    C# 获取程序路径
    Linux 权限设置chmod
    WPF SpreadSheetGear电子表单
    WPF 窗口
    Excel公式 提取文件路径后缀
    C#/VB.NET 获取电脑属性(硬盘ID、硬盘容量、Cpu序列号、MAC地址、系统类型)
    DevExpress Carousel 设置水平滑动列表
  • 原文地址:https://www.cnblogs.com/mashuai-191/p/9005599.html
Copyright © 2011-2022 走看看