问题描述:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given heights = [2,1,5,6,2,3],
return 10.
算法分析:有两种方法,第一种暴力法,利用两重循环,求[i,j]之间最大的矩形面积。第二种方法利用栈,栈中存放递增的索引。
方法一:brute force
//brute force,用两重循环,求[i,j]之间最小值
public static int largestRectangleArea(int[] heights)
{
int minHeight = 0;
int maxArea = 0;
for(int i = 0; i < heights.length; i ++)
{
for(int j = i; j < heights.length; j ++)
{
if(i == j)
{
minHeight = heights[i];
}
else
{
if(heights[j] < minHeight)
{
minHeight = heights[j];
}
}
int temp = minHeight * (j - i + 1);
if(maxArea < temp)
{
maxArea = temp;
}
}
}
return maxArea;
}
方法二:http://www.cnblogs.com/lichen782/p/leetcode_Largest_Rectangle_in_Histogram.html
//利用栈和单调性
public static int largestRectangleArea2(int[] heights)
{
Stack<Integer> stack = new Stack<>();
int[] h = Arrays.copyOf(heights, heights.length + 1);//h最后元素补0,为了让所有元素出栈,所以补0
int i = 0;
int maxArea = 0;
while(i < h.length)
{
if(stack.isEmpty() || h[stack.peek()] <= h[i])
{
stack.push(i++);//只存放单调递增的索引
}
else
{
int t = stack.pop();//stack.isEmpty说明i是栈里最小的元素,面积为i*h[t]
maxArea = Math.max(maxArea, h[t]*(stack.isEmpty() ? i : i-stack.peek()-1));
}
}
return maxArea;
}