zoukankan      html  css  js  c++  java
  • Social Infrastructure Information Systems Division, Hitachi Programming Contest 2020 C题题解

    首先,我们将题目理解成若(i)(j)距离恰好为(3),则不可能(p_i equiv p_j equiv 1 space or space 2 (mod 3))。这就相当于我们要构造一个大小为([frac{n + 1}{3}])的点集(A_2),用来放所有模3余2的数,再构造一个大小为([frac{n + 2}{3}])的点集(A_1),用来放所有模3余1的数。需要满足这两个集合交集为空,且若(i)(j)距离为(3),则它们不在同一个集合内。

    发现距离为(3)的点连成的图性质是不好的,唯一好的性质就是:它是二分图。我们不妨大胆地把条件加强为:构造这样的点集(A_1, A_2),使得它们全部再二分图的同一边。

    我们把树按深度奇偶染色,不妨设染一种颜色的点数为(X),另一种为(Y),且(X leq Y)

    (X ge [frac{n + 1}{3}])(Y ge [frac{n + 2}{3}]),我们就在(X)中任意取([frac{n + 1}{3}])个点作为(A_2),在(Y)中任意取([frac{n + 2}{3}])个点作为(A_1)即可。

    否则我们容易证明(Y ge [frac{n + 1}{3}] + [frac{n + 2}{3}]),在(Y)中任意找两个集合的点即可。

    代码如下:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 200005;
    
    template <class T>
    void read (T &x) {
    	int sgn = 1;
    	char ch;
    	x = 0;
    	for (ch = getchar(); (ch < '0' || ch > '9') && ch != '-'; ch = getchar()) ;
    	if (ch == '-') ch = getchar(), sgn = -1;
    	for (; '0' <= ch && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
    	x *= sgn;
    }
    template <class T>
    void write (T x) {
    	if (x < 0) putchar('-'), write(-x);
    	else if (x < 10) putchar(x + '0');
    	else write(x / 10), putchar(x % 10 + '0');
    }
    
    struct edge {
    	int to, nxt;
    } tree[N << 1];
    int n, col[N], head[N], perm[N], cnt = 0, cnt0 = 0, cnt1 = 0;
    void addedge (int u, int v) {
    	edge e = {v, head[u]};
    	tree[head[u] = cnt++] = e;
    } 
    
    void dfs (int u, int fa) {
    	for (int i = head[u]; ~i; i = tree[i].nxt) {
    		int v = tree[i].to;
    		if (v != fa) {
    			col[v] = col[u] ^ 1;
    			dfs(v, u);
    		}
    	}
    }
    
    int main () {
    	read(n);
    	for (int i = 1; i <= n; i++) head[i] = -1;
    
    	for (int i = 1; i < n; i++) {
    		int u, v;
    		read(u), read(v);
    		addedge(u, v), addedge(v, u);
    	}
    	col[1] = 0, dfs(1, 0);
    
    	for (int i = 1; i <= n; i++) {
    		if (col[i] == 0) cnt0++;
    		else cnt1++;
    	}
    
    	if (cnt0 > cnt1) {
    		for (int i = 1; i <= n; i++) col[i] ^= 1;
    		swap(cnt0, cnt1);
    	}
    	int bound0 = n / 3, bound1 = (n + 1) / 3, bound2 = (n + 2) / 3;
    	if (cnt0 >= bound1 && cnt1 >= bound2) {
    		int tot0 = 0, tot1 = 0, tot2 = 0;
    		for (int i = 1; i <= n; i++) {
    			if (col[i] == 0) {
    				if (tot2 >= bound1) perm[i] = 3 * ++tot0;
    				else perm[i] = 3 * ++tot2 - 1;
    			}
    			else {
    				if (tot1 >= bound2) perm[i] = 3 * ++tot0;
    				else perm[i] = 3 * ++tot1 - 2;
    			}
    		}
    	}
    	else {
    		int tot0 = 0, tot1 = 0, tot2 = 0;
    		for (int i = 1; i <= n; i++) {
    			if (col[i] == 0) perm[i] = 3 * ++tot0;
    			else {
    				if (tot1 < bound2) perm[i] = 3 * ++tot1 - 2;
    				else if (tot2 < bound1) perm[i] = 3 * ++tot2 - 1;
    				else perm[i] = 3 * ++tot0;
    			}
    		}
    	}
    	for (int i = 1; i <= n; i++) write(perm[i]), putchar(' ');
    	putchar('
    ');
    	return 0;
    }
    
  • 相关阅读:
    Regular进阶: 几点性能优化的建议
    总结常见的违背Rest原则的接口设计做法
    如何进行用户访谈更容易获得全面而有效的信息
    关于以太坊智能合约在项目实战过程中的设计及经验总结(2)
    关于以太坊智能合约在项目实战过程中的设计及经验总结(1)
    字节码执行方式--解释执行和JIT
    Redis数据库结构与读写原理
    移动端工程架构与后端工程架构的思想摩擦之旅(2)
    类文件结构与javap的使用
    JVM垃圾收集器(1)
  • 原文地址:https://www.cnblogs.com/mathematician/p/12566643.html
Copyright © 2011-2022 走看看