zoukankan      html  css  js  c++  java
  • Maximum Flow

    本文参考以下文章

    Flow Networks基本性质

    在图论中,网络流被定义为一个有向图,其中包含一个起点Source和一个终点Target,以及几条连接各顶点的边。每条边都有各自的容量Capacity,这是边所能允许的最大流量

    网络流中的流量$f$应满足如下条件

    • 从节点$x$流向节点$y$的流量,不能比$edge(x,y)$的capacity还大,(f(x,y)≤c(x,y))
    • 若定义 从节点$x$流向节点$y$的的流量有5单位,(f(x,y)=5),则 从节点$y$流向节点$x$的流量有-5单位,(f(y,x)=-5)
    • 对图中除了Source和Target以外的结点,所有输入的流量之和要等于所有输出的流量之和
      • 也就是流量不会无故增加或无故减少,可视为一种能量守恒
      • 以下图为例,流入节点A的流量为6,流出的流量也是6,对C、D也是

    最大流:网络允许从源Source流向终点Target的最大流量

    下面介绍Ford-Fulkerson Algorithm(若使用BFS,则又称为Edmonds-Karp Algorithm)来解决此问题

    Ford-Fulkerson Algorithm

    Ford-Fulkerson Algorithm需要两个辅助工具

    1. Residual Networks(残差网络)
    2. Augmenting Paths(增广路径)

    Residual Networks

    残差网络表示图中每条边剩余可允许通过的流量构成的图,以下图为例

    若在Path:S-A-C-D-T上的所有边都有6单位的流量,那么这些边,(edge(S,A))(edge(A,C))(edge(C,D))、$edge(D,T)$的剩余容量都应该减6。例如,$edge(S,A)$只能容纳3单位的流量,$edge(C,D)$只能容纳1单位的流量

    若$edge(x,y)$上有$f(x,y)$单位的流量流过,则$edge(x,y)$上的residual capacity定义为:

    • (c_f(x,y)=c(x,y)-f(x,y))
      • $c(x,y)$为原始edge(x,y)的容量
      • $f(x,y)$表示目前edge(x,y)已有多少流量
      • $c_f(x,y)$表示edge(x,y)还能容纳多少流量

    Residual Networks也是一个有向图,其中:

    • 顶点集与原有向图完全相同
    • 边的容量被residual capacity取代,如下图所示

    最关键的是,若$edge(A,C)$上有6单位的流量流过$f(A,C)=6$,那么在其Residual Networks上,会相应产生出一条顶点C指向顶点A的边$edge(C,A)$,并具有6单位的residual capacity(c_f(C,A)=6)

    这样做有什么意义?可以用如果想要重新配置流量方向来理解

    举例来说,假设现在恢复到初始状态(没有任何流量流过),现在有2单位的流量经过Path:S-C-A-B-T,但是由于并不存在从顶点C指向顶点A的$edge(C,A)$,因此$c(C,A)=0$。假设有6单位的流量从顶点A流向顶点C(如上图所示),那么现在就可以从$edge(A,C)$上把2单位的流量收回,从而分配到$edge(A,B)$上,而$edge(A,C)$上,就只剩下4单位的流量,最后结果如下图左所示,此时的Residual Networks如下图右所示

    下图是从网上找到的另一个例子

    Augmenting Paths

    Residual Networks里,所有能够从源Source走到终Target的路径,也就是所有能够增加流量的路径,就称为Augmenting Paths(增广路径)

    以上图为例,Augmenting Paths有很多种可能,例如

    • Path:S-A-B-T,1~3单位的流量
      • 因为在该路径中,所有edge中最小的capacity为$c(S,A)=c(A,B)=3$,因此可以容许流量大小为1~3
    • Path:S-C-B-D-T,1~2单位的流量
      • 因为在该路径中,所有edge中最小的capacity为$c(B,D)=c(D,T)=2$,因此可以容许的流量大小为1~2

    综上

    • 若要看当前流入Target的总流量,要在下图左,edge上标示flow/capacity的图上找
      • 下图左流入终点Target的flow为8单位
    • 若要找还能增加多少流量,也就是找Augmenting Paths,需要在Residual Networks上找,如下图右所示
      • 若在Path:S-A-B-T、Path:S-A-C-D-T、Path:S-C-B-T流入不超过该路径上最低residual capacity的flow, 都是Augmenting Paths

    讲完上面两个概念,下面讲解Ford-Fulkerson Algorithm算法

    • Residual Networks上寻找Augmenting Paths
      • BFS()寻找,确保每次找到的Augmenting Paths一定经过最少的edge
      • 找到Augmenting Paths上最小的residual capacity,将其加入总flow
      • 再以最小的residual capacity更新Residual Networks上edge的residual capacity
    • 重复上述步骤,直到再也没有Augmenting Paths为止

    以上图为例,寻找Maximum Flow的步骤如下

    • 开始时用flow = 0初始化residual Networks

    • 在图中,以bfs()找到从ST且edge最少的Path:S-A-B-T
      • bfs()找到的可能有三条最短Path,这里就以S-A-B-T为例

    • 观察Path:S-A-B-T上的edge,发现$edge(A,B)$具有最小的residual capacity (c_f(A,B)=3),所以update:总flow增加3
    • 更新edge的residual capacity
      • (c_f(S,A)=c(S,A)-f(S,A)=9-3=6)
      • (c_f(A,S)=c(A,S)-f(A,S)=0+3=3)
      • (c_f(A,B)=c(A,B)-f(A,B)=3-3=0)
      • (c_f(B,A)=c(B,A)-f(B,A)=0+3=3)
      • (c_f(B,T)=c(B,T)-f(B,T)=9-3=6)
      • (c_f(T,B)=c(T,B)-f(T,B)=0+3=3)

    • 在途中,以bfs()找到从S*到T且edge最少的Path:S-C-D-T

    • 观察Path:S-C-D-T上的edge,发现$edge(C,D)$具有最小的residual capacity (c_f(C,D)=7),所以update:总flow增加7

    • 更新edge的residual capacity

      • (c_f(S,C)=c(S,C)-f(S,C)=9-7=2)
      • (c_f(C,S)=c(C,S)-f(C,S)=0+7=7)
      • (c_f(C,D)=c(C,D)-f(C,D)=7-7=0)
      • (c_f(D,C)=c(D,C)-f(D,C)=0+7=7)
      • (c_f(D,T)=c(D,T)-f(D,T)=8-7=1)
      • (c_f(T,D)=c(D,T)-f(T,D)=0+7=7)

    接着重复上述步骤:更新Residual Networks,寻找Augmenting Paths

    • 找到Path:S-C-B-T

    • 更新Residual Networks

    • 找到Path:S-A-C-B-T

    • 更新Residual Networks

    • 找到Path:S-A-C-B-D-T

    • 更新Residual Networks

    • 找到Maximum Flow=17

    完整代码如下

    #include <iostream>
    #include <vector>
    #include <queue>
    using namespace std;
    
    class Graph {
    private:
        int num_vertex; //顶点
        vector<vector<int>> map; // 邻接矩阵
    public:
        Graph():num_vertex(0){};
        Graph(int n);
        void AddEdge(int from, int to, int capacity);
        void FordFulkerson(int s, int t);
        bool BfsFindExistingPath(vector<vector<int>> graph, int* predecessor, int s, int t);
        int MinCapacity(vector<vector<int>> graph, int* predecessor, int t);
    };
    
    Graph::Graph(int n):num_vertex(n) {
        map.resize(num_vertex);
        for (int i = 0; i < num_vertex; i++)
            map[i].resize(num_vertex);
    }
    
    bool Graph::BfsFindExistingPath(vector<vector<int>> graph, int* predecessor, int s, int t) {
        int visited[num_vertex];
        for (int i = 0; i < num_vertex; i++) {
            visited[i] = 0; // 0 表示没有访问过
            predecessor[i] = -1;
        }
    
        queue<int> queue;
        queue.push(s);
        visited[s] = 1; // 1 表示访问过
        while (!queue.empty()) {
            int vertex = queue.front(); queue.pop();
            for (int j = 0; j < num_vertex; j++) {
                if (graph[vertex][j] != 0 && visited[j] == 0) {
                    queue.push(j);
                    visited[j] = 1;
                    predecessor[j] = vertex;
                }
            }
        }
        return (visited[t] == 1); // 若t被访问过,表示有path从s到t
    }
    
    int Graph::MinCapacity(vector<vector<int>> graph, int* predecessor, int t) {
        int min = 0x3f3f3f; // 确保min会更新,假设graph上的capacity都小于0x3f3f3f
        
        // 用predecessor[idx]和idx表示一条edge
        // 找到 从s到t 的path中,capacity最小的值,存入min
        for (int idx = t; predecessor[idx] != -1; idx = predecessor[idx])
            if (graph[predecessor[idx]][idx] != 0 && graph[predecessor[idx]][idx] < min)
                min = graph[predecessor[idx]][idx];
        return min;
    }
    
    void Graph::FordFulkerson(int s, int t) {
        vector<vector<int>> graphResidual(map);
        int maxflow = 0;
        int predecessor[num_vertex];
    
        // bfs find augmeting path
        while (BfsFindExistingPath(graphResidual, predecessor, s, t)) {
            int min_capacity = MinCapacity(graphResidual, predecessor, t);
            maxflow = maxflow + min_capacity;
            for (int y = t; y != s; y= predecessor[y]) {
                // update residual graph
                int x = predecessor[y];
                graphResidual[x][y] -= min_capacity;
                graphResidual[y][x] += min_capacity;
            }
        }
        cout << "Maximum Flow: " << maxflow << endl;
    }
    
    void Graph::AddEdge(int from, int to, int capacity) {
        map[from][to] = capacity;
    }
    
    int main() {
        Graph g(6);
        g.AddEdge(0, 1, 9);g.AddEdge(0, 3, 9);
        g.AddEdge(1, 2, 3);g.AddEdge(1, 3, 8);
        g.AddEdge(2, 4, 2);g.AddEdge(2, 5, 9);
        g.AddEdge(3, 2, 7);g.AddEdge(3, 4, 7);
        g.AddEdge(4, 2, 4);g.AddEdge(4, 5, 8);
    
        g.FordFulkerson(0, 5); // 指定source为0,target为5
        return 0;
    }
    
  • 相关阅读:
    git忽略.idea文件
    python pip获取所有已安装的第三包
    bootstrap最简单的导航条
    sencha architect开发sencha touch应用注意事项
    反编译sencha toucha打包的apk文件,修改应用名称支持中文以及去除应用标题栏
    TortoiseSVN文件夹及文件图标不显示解决方法
    sql server 约束 查找
    SQLSERVER金额转换成英文大写的函数
    JS把数字金额转换成中文大写数字的函数
    C#中将数字金额转成英文大写金额的函数
  • 原文地址:https://www.cnblogs.com/mathor/p/12416573.html
Copyright © 2011-2022 走看看