zoukankan      html  css  js  c++  java
  • MT【255】伸缩变换

    (2012新课标9)已知$omega>0,$函数$f(x)=sin(omega x+dfrac{pi}{4})$在$(dfrac{pi}{2},pi)$上单调递减,则$omega$的取值范围是______


    分析:

    常规方法:$dfrac{pi}{2}+2kpileomega x+dfrac{pi}{4}ledfrac{3pi}{2}+2kpi,kin Z$
    得$xin[dfrac{pi+8kpi}{4omega},dfrac{5pi+8kpi}{4omega}]$取$k=0$得$dfrac{pi}{4omega}ledfrac{pi}{2},dfrac{5pi}{4omega}gepi$得$omegain[dfrac{1}{2},dfrac{5}{4}]$
    巧法:利用图像伸缩变换,如图

    先对函数$f(x)=sin(x+dfrac{pi}{4})$作图,$f(x)=sin(omega x+dfrac{pi}{4})$是由上图纵坐标不变,横坐标伸缩为原来的$dfrac{1}{omega}$所得.

    考虑$dfrac{pi}{4omega}=dfrac{pi}{2},dfrac{5pi}{4omega}=pi$易得$omegain[dfrac{1}{2},dfrac{5}{4}]$

  • 相关阅读:
    poj2679
    poj2709
    poj1521
    poj2054
    静脉曲张病案
    眩晕耳鸣病案
    声嘶治验
    甘露消毒丹治疗高热不退一例
    黄芩汤加减治疗腹痛一例
    自残症治愈案
  • 原文地址:https://www.cnblogs.com/mathstudy/p/10018419.html
Copyright © 2011-2022 走看看