已知$ BC=6,AC=2AB, $点$ D $满足$ overrightarrow{AD}=dfrac{2x}{x+y}overrightarrow{AB}+dfrac{y}{2(x+y)}overrightarrow{AC}, $设$f(x,y)=|overrightarrow{AD}|,$若$ f(x,y)ge f(x_0,y_0) $恒成立,则$f(x_0,y_0)$的最大值为____
解答:4
$ overrightarrow{AD}=dfrac{x}{x+y}overrightarrow{AB_1}+dfrac{y}{x+y}overrightarrow{AC_1} $,其中$C_1,B$分别为$ AC $和$ AB_1 $的中点.
易知$B_1C_1=BC=6,dfrac{AB_1}{AC_1}=dfrac{2AB}{frac{1}{2}AC}=2$故$D$在$B_1C_1$所在直线上动,$A$在半径为4的圆上动.
$f(x,y)_{min}$为$A$到$ B_1C_1 $的距离, 再让$ A $动起来时易知最大值为半径4