zoukankan      html  css  js  c++  java
  • MT【198】连乘积放缩

    (2018中科大自招最后一题)
    设$a_1=1,a_{n+1}=left(1+dfrac{1}{n} ight)^3(n+a_n)$证明:
    (1)$a_n=n^3left(1+sumlimits_{k=1}^{n-1}dfrac{1}{k^2} ight);
    (2)prodlimits_{k=1}^nleft(1+dfrac{k}{a_k} ight)<3$

    证明:
    1)数学归纳法,略.

    $k=1$时候显然成立,$kge2$时有如下漂亮的连乘积放缩:

    egin{align*}
    prodlimits_{k=1}^nleft(1+dfrac{k}{a_k} ight)&=prodlimits_{k=1}^nleft(1+dfrac{1}{k^2(1+sumlimits_{m=1}^{k-1}frac{1}{m^2})} ight)\
    &<prodlimits_{k=1}^n(1+dfrac{1}{k^2left(2-frac{1}{k} ight)})\
    &=prodlimits_{k=1}^{n}{dfrac{2k^2-k+1}{2k^2-k}}\
    &<2prod_{k=2}^{n}{dfrac{k(2k-1)}{(k-1)(2k+1)}}\
    &=dfrac{6n}{2n+1}\
    &<3
    end{align*}

    如果证明$<8$则变为一道难度降为高考题的题,可以解答如下:

    由于
    egin{align*}
    sumlimits_{k=1}^ndfrac{k}{a_k}& =sumlimits_{k=1}^ndfrac{k}{k^3left(1+sumlimits_{m=1}^{k-1}frac{1}{m^2} ight)} \
    & <sumlimits_{k=1}^ndfrac{1}{k^2left(2-frac{1}{k} ight)}\
    &=sumlimits_{k=1}^ndfrac{1}{2k^2-k}\
    &<sumlimits_{k=1}^ndfrac{1}{2(k-frac{3}{4})(k+frac{1}{4})}\
    &=2-dfrac{1}{2n+1/2}\
    &<2
    end{align*}

    egin{align*}
    prodlimits_{k=1}^nleft(1+dfrac{k}{a_k} ight)& leleft(dfrac{sumlimits_{k=1}^n{(1+dfrac{k}{a_k}})}{n} ight)^n \
    & <left(1+dfrac{2}{n} ight)^n\
    &<e^2<8
    end{align*}

    改为$<8$后本质上考察了下面这个重要的极限:

    $limlimits_{nlongrightarrow +infty}{(1+dfrac{1}{n})^n}=e$

    练习:证明存在:$nin N,prodlimits_{k=1}^nleft(dfrac{k^2}{k^2+1} ight)<dfrac{2}{7}$

  • 相关阅读:
    怎么写好组件
    你所不知道的 URL
    响应式Web设计 – 布局
    ajax请求总是不成功?浏览器的同源策略和跨域问题详解
    滑屏 H5 开发实践九问
    UVALive
    [CQOI2018] 破解D-H协议
    [CQOI2018] 解锁屏幕
    HDU
    CodeChef
  • 原文地址:https://www.cnblogs.com/mathstudy/p/9164387.html
Copyright © 2011-2022 走看看