zoukankan      html  css  js  c++  java
  • 【HDU5934】Bomb——有向图强连通分量+重建图

    题目大意

    二维平面上有 n 个爆炸桶,ithi-th爆炸桶位置为 (xi,yi)(x_i, y_i) 爆炸范围为 rir_i ,且需要 cic_i 的价格引爆,求把所有桶引爆所需的钱。

    分析

    通过求有向图的强连通分量,求出所有爆炸块(满足引爆一个块内的任意一个爆炸桶就可以摧毁这个块内的爆炸桶),然后把所有爆炸块视为一个爆炸桶,价值为爆炸块内的价值最小值,然后重建有向图,将新建的有向图所有入度为 0 的点的价值相加,就是答案。

    AC-Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int MAXN = 1100;  // 点数
    const int MAXM = 1000100; // 边数
    struct Edge {
        int to, next;
    } edge[MAXM]; // 只有这里写的是 MAXM
    
    int head[MAXN], tot;
    int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong 数组的值是 1 ~ scc
    int Index, top;
    int scc; // 强连通分量的个数
    bool Instack[MAXN];
    int num[MAXN]; // 各个强连通分量包含点的个数,数组编号 1 ~ scc
    // num 数组不一定需要,结合实际情况
    
    void addedge(int u, int v) {
        edge[tot].to = v;
        edge[tot].next = head[u];
        head[u] = tot++;
    }
    
    void Tarjan(int u) {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for (int i = head[u]; i != -1; i = edge[i].next) {
            v = edge[i].to;
            if (!DFN[v]) {
                Tarjan(v);
                if (Low[u] > Low[v])
                    Low[u] = Low[v];
            } else if (Instack[v] && Low[u] > DFN[v])
                Low[u] = DFN[v];
        }
        if (Low[u] == DFN[u]) {
            scc++;
            do {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = scc;
                num[scc]++;
            } while (v != u);
        }
    }
    
    void solve(int N) {
        memset(DFN, 0, sizeof(DFN));
        memset(Instack, false, sizeof(Instack));
        memset(num, 0, sizeof(num));
        Index = scc = top = 0;
        for (int i = 1; i <= N; i++)
            if (!DFN[i])
                Tarjan(i);
    }
    
    void init() {
        tot = 0;
        memset(head, -1, sizeof(head));
    }
    
    struct node {
        int x, y, r, c;
    
        bool in_boom(const node &other) const {
            return hypot(abs(x - other.x), abs(y - other.y)) <= r;
        }
    };
    
    node nodeList[1100];
    int n;
    
    void init_graph1() {
        init();
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (i == j) continue;
                if (nodeList[i].in_boom(nodeList[j]))
                    addedge(i, j);
            }
        }
    }
    
    struct Graph {
        struct Node {
            int deg;
            int value;
        };
        Node node[MAXN];
    
        void init() {
            for (int i = 0; i < n + 5; ++i) {
                node[i].deg = 0;
                node[i].value = INT_MAX;
            }
        }
    
        void add_edge(int from, int to) {
            if (from != to)
                node[to].deg++;
        }
    };
    
    Graph graph;
    int ans;
    
    void tp_init() {
        graph.init();
        for (int i = 1; i <= n; ++i) {
            graph.node[Belong[i]].value = min(graph.node[Belong[i]].value, nodeList[i].c);
            for (int j = 1; j <= n; ++j) {
                if (i == j) continue;
                if (nodeList[i].in_boom(nodeList[j]))
                    graph.add_edge(Belong[i], Belong[j]);
            }
        }
    }
    
    void tp() {
        ans = 0;
        tp_init();
    
        for (int i = 1; i <= scc; ++i) {
            if (graph.node[i].deg == 0) {
                ans += graph.node[i].value;
            }
        }
    }
    
    void solve() {
        int t;
        cin >> t;
        for (int ts = 0; ts < t; ++ts) {
            cin >> n;
            for (int i = 1; i <= n; ++i) {
                cin >> nodeList[i].x >> nodeList[i].y >> nodeList[i].r >> nodeList[i].c;
            }
            init_graph1();
            solve(n);
            tp();
            cout << "Case #" << ts + 1 << ": " << ans << endl;
        }
    }
    
    int main() {
        ios_base::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
    #ifdef ACM_LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
        long long test_index_for_debug = 1;
        char acm_local_for_debug;
        while (cin >> acm_local_for_debug) {
            cin.putback(acm_local_for_debug);
            if (test_index_for_debug > 20) {
                throw runtime_error("Check the stdin!!!");
            }
            auto start_clock_for_debug = clock();
            solve();
            auto end_clock_for_debug = clock();
            cout << "Test " << test_index_for_debug << " successful" << endl;
            cerr << "Test " << test_index_for_debug++ << " Run Time: "
                 << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
            cout << "--------------------------------------------------" << endl;
        }
    #else
        solve();
    #endif
        return 0;
    }
    
  • 相关阅读:
    Tair分布式key/value存储
    Ehcache详细解读
    专访阿里中间件高级专家沈询
    boost之词法解析器spirit
    快速部署Python应用:Nginx+uWSGI配置详解
    CMake如何执行shell命令
    show engine innodb status 详解
    HTTP Request header
    json python api
    mysql 索引对于select速度提升作用实验
  • 原文地址:https://www.cnblogs.com/mauve-hkq/p/12173139.html
Copyright © 2011-2022 走看看