this example is from chapter 4 in 《the introduction to algorithm》
the main idea is all showed in the book , i think maybe realizing the algorithm is a good way to understand it.
/* from : introduction to algorithm chapter four algorithm:divide and conquer the time complexity of this algorithm is O(n * logn) */ #include <stdio.h> int Find_max_crossing_subarray(int *a, int low, int mid, int high) { int left_sum = -0xffff; int sum = 0; for (int i = mid; i >= low; i--) { sum += a[i]; if (sum > left_sum) left_sum = sum; } int right_sum = -0xffff; sum = 0; for (int j = mid+1; j <= high; j++) { sum += a[j]; if (sum > right_sum) right_sum = sum; } return left_sum + right_sum; } int find_maximum_subarray(int *a, int low, int high) { if (high == low) { return *(a+high); // base case: only one element } else { int mid = (high + low)/2; if ((find_maximum_subarray(a, low, mid) >= find_maximum_subarray(a, mid+1, high))&&(find_maximum_subarray(a, low, mid)>=Find_max_crossing_subarray(a,low,mid,high))) { return find_maximum_subarray(a, low, mid); } else if ((find_maximum_subarray(a, mid+1, high) >= find_maximum_subarray(a, low, mid))&&(find_maximum_subarray(a, mid+1, high) >= Find_max_crossing_subarray(a,low,mid,high))) { return find_maximum_subarray(a, mid+1, high); } else { return Find_max_crossing_subarray(a, low, mid, high); } } } int main() { int a[16]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7}; int b[6]={1,2,3,4,5}; printf("%d ",find_maximum_subarray(a,0,15)); printf("%d ",find_maximum_subarray(b,0,5)); }