zoukankan      html  css  js  c++  java
  • 2011 usp try-outs F 最小瓶颈+树剖 或 LCA

    Auction of Services

    题意:求途中任意2点路径上的最大边的最小值

    思路:这个边一定在最小生成树上,prime标记最小生成树,树剖到rmq上求最值

    AC代码:

    #include "iostream"
    #include "iomanip"
    #include "string.h"
    #include "stack"
    #include "queue"
    #include "string"
    #include "vector"
    #include "set"
    #include "map"
    #include "algorithm"
    #include "stdio.h"
    #include "math.h"
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define bug(x) cout<<x<<" "<<"UUUUU"<<endl;
    #define mem(a,x) memset(a,x,sizeof(a))
    #define step(x) fixed<< setprecision(x)<<
    #define mp(x,y) make_pair(x,y)
    #define pb(x) push_back(x)
    #define ll long long
    #define endl ("
    ")
    #define ft first
    #define sd second
    #define lrt (rt<<1)
    #define rrt (rt<<1|1)
    using namespace std;
    const ll mod=1e9+7;
    const ll INF = 1e18+1LL;
    const int inf = 1e9+1e8;
    const double PI=acos(-1.0);
    const int N=2e5+100;
    ///http://codeforces.com/gym/101081
    
    
    ///FFFFFF
    int siz[N],son[N],dep[N],top[N],fa[N],has[N],ran[N],sson[N],cnt;
    struct Edge{
        int to, w, next, id;
        bool friend operator <(Edge a, Edge b){
            return a.w>b.w;
        }
    }e[N<<1];
    int tot=2,head[N<<1],vis[N<<1],wi[N];  //int to[N<<1],nex[N<<1],head[N<<1],wi[N<<1],tot=2,vis[N<<1];
    int n,m,q;
    void add(int u, int v, int w){
        e[tot].to=v;
        e[tot].w=w;
        e[tot].id=tot;
        e[tot].next=head[u];
        head[u]=tot++;
    }
    
    void Prime(int n){
        Edge now;
        bool mk[N]; mem(mk,0);
        priority_queue<Edge> Q;
        while(!Q.empty()) Q.pop();
        for(int i=head[1]; i; i=e[i].next) Q.push(e[i]);
        mk[1]=1, n--;
        while(n--){
            now=Q.top(); Q.pop();
            while(mk[now.to]){
                now=Q.top();
                Q.pop();
            }
            vis[now.id]=1, vis[now.id^1]=1;
            wi[now.to]=now.w;
            mk[now.to]=1;
            for(int i=head[now.to]; i; i=e[i].next){
                if(!mk[e[i].to]) Q.push(e[i]);
            }
        }
    }
    
    void dfs1(int u, int faa){
        siz[u]=1;
        fa[u]=faa;
        dep[u]=dep[faa]+1;
        for(int i=head[u]; i; i=e[i].next){
            int v=e[i].to;
            if(v==faa || vis[i]==0) continue;
            dfs1(v,u);
            siz[u]+=siz[v];
            if(siz[son[u]]<siz[v]) son[u]=v;
        }
    }
    
    void dfs2(int u, int tp){
        top[u]=tp;
        has[u]=++cnt;
        ran[cnt]=u;
        if(son[u]) dfs2(son[u],tp);
        for(int i=head[u]; i; i=e[i].next){
            int v=e[i].to;
            if(v==fa[u] || v==son[u] || vis[i]==0) continue;
            dfs2(v,v);
        }
    }
    
    int mma[N][30];
    
    struct RMQ{
        int log2[N<<1];
        void init(){
            log2[0]=-1;
            for(int i = 1; i <= n; i ++)  log2[i] = log2[i >> 1] + 1;
            for(int j = 1; j <= 25; j ++)
                for(int i = 1; i + (1 << j) <= n + 1; i ++)
                    mma[i][j] = max(mma[i][j - 1], mma[i + (1 << j - 1)][j - 1]);
        }
        int query(int ql, int qr){
            int k = log2[qr - ql + 1];
            return max(mma[ql][k], mma[qr - (1 << k) + 1][k]);
        }
    }rmq;
    
    int get_ans(int u, int v){
        int ans=0;
        while(top[u]!=top[v]){
            if(dep[top[u]]<dep[top[v]]) swap(u,v);
            ans=max(ans,rmq.query(has[top[u]],has[u]));
            u=fa[top[u]];
        }
        if(u==v) return ans;
        if(dep[u]>dep[v]) swap(u,v);
        return ans=max(ans,rmq.query(has[son[u]],has[v]));
    }
    int main(){
        int u,v,w,a,b;
        scanf("%d%d",&n,&m);
        for(int i=1; i<=m; ++i){
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        Prime(n);
        dfs1(1,1);
        dfs2(1,1);
        for(int i=1; i<=n; ++i) mma[has[i]][0]=wi[i];
        rmq.init();
        scanf("%d",&q);
        while(q--){
            scanf("%d%d",&a,&b);
            printf("%d
    ",get_ans(a,b));
        }
        return 0;
    }
  • 相关阅读:
    (3)C++复合类型
    (2)C++基本类型
    (7)js调试
    Oracle语句优先级
    oracle排序问题
    jsp四大对象
    postgresql时间加减计算
    全角空格,跟汉字一样宽
    bzoj1433 [ZJOI2009]假期的宿舍 最大流
    BZOJ 1264 AHOI2006 基因匹配Match 动态规划+树状数组
  • 原文地址:https://www.cnblogs.com/max88888888/p/7545850.html
Copyright © 2011-2022 走看看