论文:Huo, Zepeng, Xiao Huang, and Xia Hu. "Link Prediction with Personalized Social Influence." (2018).
1. Motivation
先思考几个问题
- 已知一个微博用户今天的活动记录(转发、评论、点赞等),能否预测其明天的活动情况?
- 假设该用户追星,而且其偶像的每一条微博他都会转发评论,那么对其明天的活动情况的预测是不是会更容易?
- 为什么更容易了?因为该用户的偶像对他有影响,这种影响降低了预测该用户活动的随机性,于是预测就更容易。
- 那么如果给出了所有用户的活动记录,是不是能够反推出用户间的相互影响力,进而更精确地对用户和网络建模表示,从而提高链接预测等应用的精确度。
那么接下来的问题是怎么由活动记录反推影响力。
1.1 由活动记录反推影响力
- 『已知用户 (u_i) 的活动记录,预测其明天的活动情况』与『已知用户偶像 (u_j) 和该用户 (u_i) 的活动记录,预测其明天的活动情况』,两个预测的不确定性之间,相差的就是偶像 (u_j) 对该用户 (u_i) 的影响。
- 那么怎么衡量这种不确定性?信息熵。熵在信息论中代表随机变量不确定度的度量。下面这个是信息熵的公式。
2. 问题定义
现在来定义一下要解决的问题。
令 (mathcal{G}=left{mathcal{U},mathcal{E} ight}) 表示网络,其中 (mathcal{U}={u_1,u_2,ldots,u_N}) 表示 (N) 个用户组成的集合,(mathcal{E}subseteq mathcal{U imes U}) 为边集合。令 (mathcal{A}) 表示活动时间戳集合,(mathcal{A}^{(i)}=left{t_{i,1},t_{i,2},ldots ight}) 表示用户 (u_i) 的活动时间戳序列。
本文中的链接预测问题为:给定 (mathcal{G}) 和 (mathcal{A}),预测任意用户 (u_i) 到用户 (u_j) 有边的概率。
本文希望对于每个用户 (u_i) 能学习到两个向量 (S_i) 和 (T_i) ,分别为该用户作为边起点和边终点的表示。作为边起点时,用户对其他用户产生影响;作为终点时,该用户受其他用户的影响。最终,任意用户 (u_i) 和 (u_j) 有边的概率可通过 (S_iT_j) 表示。
3. 社交影响力度量
先解决上面说的度量社交影响力的问题,即借用信息熵由活动记录反推影响力。
3.1 时间序列建模
定义用户 (u_i) 的时间片大小为 (Delta t^i=(t_{max}-t_{min})/M),从而将用户 (u_i) 的活动时间划分为 (M) 段。
定义任意用户 (u_x) 在第 (m) 段的活动频度为 (A_{x,m}^{(i)})。
则对用户 (u_i) 来说,时间戳序列集合 (mathcal{A}) 被转化为一个矩阵 (A^{(i)}in mathbb{R}^{N imes M})。
于是,我们将有 (N) 个不同的矩阵,即 (left{A^{(i)}
ight}, ext{for} i=1,2,ldots,N)
下图为对这 (N) 个矩阵的一种具象的表示。
3.2 影响力度量
考虑边 ((i,j)),用户 (u_i) 关注 (u_j),则 (u_j) 对 (u_i) 产生影响。在矩阵 (A^{(i)}) 上计算用户 (u_j) 对 (u_i) 的影响力如下:
- 将 (A^{(i)}_i) 视为马尔可夫链,即可由 (A^{(i)}_{i,m}) 预测 (A_{i,m+1}^{(i)}),则可定义用户 (u_i) 在 (m+1) 段活跃的概率为
则可得一个分布
该分布表达在不知 (u_j) 影响的前提下,对 (u_i) 活跃度预测的不确定性。
2. 类似可得分布
该分布表达在已知 (u_j) 活动记录和 (u_i) 活动记录前提下,对 (u_i) 活跃度预测的不确定性。
- 于是可将两分布的熵之差视作 (u_j) 对 (u_i) 影响的度量:
3.3 (p_1) 和 (p_2) 的计算
(p_1) 是通过 Logistic 回归计算的:
其中 (alpha_0) 和 (alpha_1) 是通过学习得到的。
学习过程的输入为 (left{A_{i,1}^{(i)},A_{i,2}^{(i)},ldots,A_{i,M-1}^{(i)}
ight}),对应 label 为 (left{ ext{sgn}(A_{i,2}^{(i)}), ext{sgn}(A_{i,3}^{(i)}),ldots, ext{sgn}(A_{i,M}^{(i)})
ight})。
其中 (f(x)=egin{cases} x,& ext{if} xleq 2,\ 1+lceillog(1+x) ceil, &o/w. \ end{cases}),是为保证更符合现实情况,如某个用户在短时间内发了大量微博,其他用户并不一定每一条都看到。
类似地,(p_2) 可如下计算:
4. 社交影响力 + 网络结构
如果在保持网络结构的基础上,边的强度与边两端节点的影响力成正比,这样学习到的表示就能够更有效地利用网络中的信息。
定义 (u_i) 到 (u_j) 有边的概率为
其中 (d_i^{ ext{out}}=sum_{(i,n)in mathcal{E}}I_{n o j})。
再定义由节点向量表示计算 (u_i) 到 (u_j) 有边的概率为
于是,将目标函数设置为最小化两者的 KL 散度即可:
去掉常数项得:
4.1 负采样
通过定义新的条件概率区别正负样本:
则目标函数为:
则最终的目标函数为:
之后使用异步随机梯度下降迭代更新参数 (S) 和 (T) 即可学习到节点的表示。
5. 总结
- 网络结构 + 社交影响力
- 构造分布,使用信息熵度量影响力
- 每个用户有 (S) 和 (T) 两个向量,表达其不同角色
END
2018.4.9