zoukankan      html  css  js  c++  java
  • 微服务日志之Spring Boot Kafka实现日志收集

    前言

    承接上文( 微服务日志之.NET Core使用NLog通过Kafka实现日志收集 https://www.cnblogs.com/maxzhang1985/p/9522017.html ).NET/Core的实现,我们的目地是为了让微服务环境中dotnet和java的服务都统一的进行日志收集。
    Java体系下Spring Boot + Logback很容易就接入了Kafka实现了日志收集。

    Spring Boot集成

    Maven 包管理

    <dependencyManagement>
      <dependencies>
         <dependency>
        <groupId>ch.qos.logback</groupId>
        <artifactId>logback-core</artifactId>
        <version>1.2.3</version>
        </dependency>
      </dependencies>
    </dependencyManagement>
    

    包依赖引用:

    <dependency>
        <groupId>com.github.danielwegener</groupId>
        <artifactId>logback-kafka-appender</artifactId>
        <version>0.2.0-RC1</version>
    </dependency>
    <dependency>
        <groupId>ch.qos.logback</groupId>
        <artifactId>logback-classic</artifactId>
        <version>1.2.3</version>
        <scope>runtime</scope>
    </dependency>
    <dependency>
        <groupId>net.logstash.logback</groupId>
        <artifactId>logstash-logback-encoder</artifactId>
        <version>5.0</version>
    </dependency>
    

    logback-spring.xml

    在Spring Boot项目resources目录下添加logback-spring.xml配置文件,注意:一定要修改 {"appname":"webdemo"},这个值也可以在配置中设置为变量。添加如下配置,STDOUT是在连接失败时,使用的日志输出配置。所以这每个项目要根据自己的情况添加配置。在普通日志输出中使用异步策略提高性能,内容如下:

     <appender name="kafkaAppender" class="com.github.danielwegener.logback.kafka.KafkaAppender">
            <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder" >
                <customFields>{"appname":"webdemo"}</customFields>
                <includeMdc>true</includeMdc>
                <includeContext>true</includeContext>
                <throwableConverter class="net.logstash.logback.stacktrace.ShortenedThrowableConverter">
                    <maxDepthPerThrowable>30</maxDepthPerThrowable>
                    <rootCauseFirst>true</rootCauseFirst>
                </throwableConverter>
            </encoder>
            <topic>loges</topic>
            <keyingStrategy class="com.github.danielwegener.logback.kafka.keying.HostNameKeyingStrategy" />
            <deliveryStrategy class="com.github.danielwegener.logback.kafka.delivery.AsynchronousDeliveryStrategy" />
            <producerConfig>bootstrap.servers=127.0.0.1:9092</producerConfig>
            <!-- don't wait for a broker to ack the reception of a batch.  -->
            <producerConfig>acks=0</producerConfig>
            <!-- wait up to 1000ms and collect log messages before sending them as a batch -->
            <producerConfig>linger.ms=1000</producerConfig>
            <!-- even if the producer buffer runs full, do not block the application but start to drop messages -->
            <!--<producerConfig>max.block.ms=0</producerConfig>-->
            <producerConfig>block.on.buffer.full=false</producerConfig>
            <!-- kafka连接失败后,使用下面配置进行日志输出 -->
            <appender-ref ref="STDOUT" />
        </appender>
    

    注意:一定要修改 {"appname":"webdemo"} , 这个值也可以在配置中设置为变量 。对于第三方框架或库的错误和异常信息如需要写入日志,错误配置如下:

    <appender name="kafkaAppenderERROR" class="com.github.danielwegener.logback.kafka.KafkaAppender">
            <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder" >
                <customFields>{"appname":"webdemo"}</customFields>
                <includeMdc>true</includeMdc>
                <includeContext>true</includeContext>
                <throwableConverter class="net.logstash.logback.stacktrace.ShortenedThrowableConverter">
                    <maxDepthPerThrowable>30</maxDepthPerThrowable>
                    <rootCauseFirst>true</rootCauseFirst>
                </throwableConverter>
            </encoder>
            <topic>ep_component_log</topic>
            <keyingStrategy class="com.github.danielwegener.logback.kafka.keying.HostNameKeyingStrategy" />
            <deliveryStrategy class="com.github.danielwegener.logback.kafka.delivery.AsynchronousDeliveryStrategy" />
            <deliveryStrategy class="com.github.danielwegener.logback.kafka.delivery.BlockingDeliveryStrategy">
                <!-- wait indefinitely until the kafka producer was able to send the message -->
                <timeout>0</timeout>
            </deliveryStrategy>
            <producerConfig>bootstrap.servers=127.0.0.1:9020</producerConfig>
            <!-- don't wait for a broker to ack the reception of a batch.  -->
            <producerConfig>acks=0</producerConfig>
            <!-- wait up to 1000ms and collect log messages before sending them as a batch -->
            <producerConfig>linger.ms=1000</producerConfig>
            <!-- even if the producer buffer runs full, do not block the application but start to drop messages -->
            <producerConfig>max.block.ms=0</producerConfig>
            <appender-ref ref="STDOUT" />
            <filter class="ch.qos.logback.classic.filter.LevelFilter"><!-- 只打印错误日志 -->
                <level>ERROR</level>
                <onMatch>ACCEPT</onMatch>
                <onMismatch>DENY</onMismatch>
            </filter>
        </appender>
    

    在异常日志用使用了同步策略保证,错误日志的有效收集,当然可以根据实际项目情况进行配置。

    LOG配置建议:

    日志root指定错误即可输出第三方框架异常日志:

     <root level="INFO">
            <appender-ref ref="kafkaAppenderERROR" />
     </root>
    

    建议只输出自己程序里的级别日志配置如下(只供参考):

    <logger name="项目所在包" additivity="false">
        <appender-ref ref="STDOUT" />
        <appender-ref ref="kafkaAppender" />
    </logger>
    
    

    最后

    GitHub:https://github.com/maxzhang1985/YOYOFx 如果觉还可以请Star下, 欢迎一起交流。

    .NET Core 开源学习群:214741894

  • 相关阅读:
    Jmail组件发送邮件说明ASP.NET
    五种常见的ASP.NET应用程序安全缺陷
    按比例生成缩略图
    光盘自动运行HTML页,Autorun文件写法
    页面全屏显示JS代码
    除去内容中的HTML代码方法
    JS函数学习(2)
    JS学习变量与基本语法(1)
    C#中Math.Round()实现中国式四舍五入
    (2) EFCore数据库上下文和模型(数据表)的配置
  • 原文地址:https://www.cnblogs.com/maxzhang1985/p/9522507.html
Copyright © 2011-2022 走看看