Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Assume that the total area is never beyond the maximum possible value of int.
思路:先判断两个长方形的相交情况,然后计算相交面积,最后计算总共占用面积
时间复杂度:
代码:
public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { return (C-A)*(D-B)+(G-E)*(H-F)-intersectionArea(A, B, C, D, E, F, G, H); } public int intersectionArea(int A, int B, int C, int D, int E, int F, int G, int H) { int situation=intersection(A, B, C, D, E, F, G, H); if(situation==1) return (G-E)*(H-F); else if(situation==2) return (C-A)*(D-B); else if(situation==3) return 0; else return ((Math.min(H, D)-Math.max(B, F))*(Math.min(C, G)-Math.max(A, E))); } /** * 判断相交情况 * 1 ABCD包含EFGH * 2 EFGH包含ABCD * 3 不相交 * 4 相交 * @param A * @param B * @param C * @param D * @param E * @param F * @param G * @param H * @return */ public int intersection(int A, int B, int C, int D, int E, int F, int G, int H) { if(D>=H && C>=G && A<=E && B<=F) return 1; if(G>C && H>D && E<A && F<B) return 2; //如果两长方形的中心点的连线在x轴上的投影小于两长方形x边长度之和的一半, 并且Y也如此,则这两个长方形相交 double x1=(A+C)*1.0/2; double y1=(B+D)*1.0/2; double x2=(E+G)*1.0/2; double y2=(F+H)*1.0/2; double rx=(C-A+G-E)*1.0/2; double ry=(D-B+H-F)*1.0/2; if(Math.abs(x2-x1)<rx && Math.abs(y2-y1)<ry) return 4; else { return 3; } }
优化:
扩展;